
Coding in
STEM Education

What European teachers can learn from each other

En
gl
is
h

<Imprint>
<Published by>
Science on Stage Deutschland e.V.
Am Borsigturm 15
13507 Berlin, Germany

<Main Coordinator>
 ↪Dr Jörg Gutschank, Leibniz Gymnasium |
Dortmund International School, Dortmund, Germany
Chair Science on Stage Deutschland e.V.

<Coordinators>
 ↪Sebastian Funk, Villa Wewersbusch, Velbert-Langenberg,
Germany, Board Science on Stage Deutschland e.V.
 ↪Jean-Luc Richter, Lycée Jean-Baptiste Schwilgué,
Sélestat, France, Vice Chair Science on Stage France
 ↪Bernard Schriek (ret.), Marien-Gymnasium, Werl, Germany

<Overall Coordination and Editing>
 ↪Daniela Neumann, Project manager
Science on Stage Deutschland e.V.
 ↪Stefanie Schlunk, Executive manager
Science on Stage Deutschland e.V.
 ↪Johanna Schulze, Deputy executive manager
Science on Stage Deutschland e.V.

<Revision and Translation>
Translation-Probst AG

<Design>
WEBERSUPIRAN.berlin

<Illustration>
Rupert Tacke, Tricom Kommunikation und Verlag GmbH

<Credits>
The authors have checked all aspects of copyright for
the images and texts used in this publication to the best of
their knowledge.

<Supported by>
SAP SE

<Please order from>
www.science-on-stage.de
info@science-on-stage.de

<ISBN PDF>
978-3-942524-58-2

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License:
https://creativecommons.org/licenses/by-sa/4.0/.

First edition published in 2019
© Science on Stage Deutschland e.V.

<2>

<Content>

Greeting EU Commission <04>

Greeting SAP SE <05>

Foreword <06>

Authors <07>

Environment 4.0

<08> Coding H2O

<14> How Water Works

<20> VPLS—Vacation Plant Life Saver

<26> Magic Glove

Fundamental Science

in 1’s and 0's

Science Friction <30>

Rolling Sounds <36>

Physics Engine <42>

SMB—Science Magic Box <48>

Microcontrolling the World

<54> CoALA—Code a Little Animal

<58> Liquid Data

<62> The Remote Captain

<68> How to Code

<72> Computer Science Education with Snap!

<73> Meet and Code

<74> Further Material & Project Events

<75> Science on Stage Europe

<3>

<Greeting>
I am very pleased to lend my support to this brochure regarding
education in Science, Technology, Engineering and Maths –
the important STEM subjects – and, more broadly, the project
Coding in STEM Education.

The STEM disciplines are crucial in building a competitive, re-
silient Europe for the future. Building knowledge and excellence
here is a key part of our ambition to build a true European Edu-
cation Area by 2025. And yet, we are facing a skills gap. We
need to do more to promote STEM subjects in Europe. In par-
ticular, teaching STEM subjects must be an attractive career
choice, and we need more role models, especially women.

This is not only about economic growth and development.
STEM education needs to be inclusive, enabling students of di-
verse abilities and backgrounds to engage and make the most
of their talents. To build the future, young people need the right
skills and attitudes – and STEM proficiency needs to be at the
heart of these.

Through science we can learn so much: about our past, and
our present, enabling us to shape a better, more knowledge-
able, future. So that future generations can live in a society
with a greater awareness of the world we live in.

I want to thank Science on Stage Deutschland e.V., the Europe-
an Network for Science Teachers, which is very much the brains
behind this operation, and SAP SE, for supporting coding pro-
jects.

Teachers from seven European countries helped develop con-
crete examples and practical advice on how to acquire coding
skills. This shows what is possible when we get together, how
much we have in common and how much we have to learn
from each other.

Projects like Coding in STEM Education have a key role to play
in promoting STEM subjects in schools, helping Europe’s youth
acquire vital competences they need to succeed in life. I com-
mend all those involved and hope your example inspires others.

Tibor Navracsics
European Commissioner for Education, Culture, Youth and Sport

<4> Greeting

<Greeting>
According to a forecast of the World Economic Forum, around
65 per cent of children who start primary school today will
work in professions that do not even exist yet. Nevertheless, it
is clear that these children will find their feet more easily if
they have certain technical skills; the digitalisation of our
economy simply cannot be stopped. Therefore, in addition to
reading, writing and math, working with new technologies has
become a key topic for education.

SAP has been involved in Europe-wide initiatives for the edu-
cation and training of children and youth for years, including
the areas of robotics (First Lego League) and programming
technology (Meet and Code). Our aim is to introduce young
people to new technologies in a fun way and facilitate a better
start for them in their future careers.

Many teachers nowadays also want to equip their students
with basic technical and digital knowledge to take with them

on their journey. This does not necessarily mean that these
teachers need to be experts; instead, they require practical,
tried and tested working materials for learning technical skills
in different subjects and at different learning levels.

In this way, we also facilitate the acquisition of digital skills in
everyday school life and provide teaching materials for STEM
subjects, for example. We have already initiated numerous
 projects to support schools with Science on Stage Germany,
including the current teaching materials Coding in STEM Edu-
cation.

I am delighted about the cooperation with Science on Stage
Germany on another such goal-oriented project, and am
convinced that this edition will be a complete success as well.
I would also like to thank the teachers who have lent their sup-
port to this topic.

Michael Kleinemeier
Member of the Executive Board, SAP SE

<5>Greeting

<Foreword>
This booklet is special in many ways. Please allow me to me
explain what I mean.

Coding is a basic skill in today’s modern world and is especial-
ly important in science, technology, engineering and mathe-
matics (STEM). Programming machines is becoming an in-
creasingly sought-after, necessary skill in all areas of our lives
and can no longer be left to IT specialists alone. Therefore,
 coding needs to be taught not only in computer science class-
es but also in every other subject. However, European curricu-
la for STEM subjects do not regularly address this need. In the
Coding in STEM Education project Science on Stage, the Euro-
pean network for science teachers, has developed teaching
concepts in an attempt to close the skills gap. The overall aim
of the network is to provide a platform for European STEM
teachers to exchange best practice ideas. Science on Stage
reaches 100,000 educators in over 30 member countries.

Some of the best teachers in Europe have contributed their
ideas to this booklet. 23 teachers from seven countries met
personally to exchange their ideas about coding in science ed-
ucation during this 18-month project. All the contributing teach-
ers invested a great deal of time and effort in this process.

A science teacher and a computer science teacher from each
of the seven countries teamed up to exchange teaching con-
cepts with a team from at least one other country. They dis-
cussed and evaluated these concepts in their own classes in
both countries to ensure that the material which you are holding
in your hands is useful in real lessons, and that it has been
well tested by our experts, the teachers themselves.

The focus is on programming small electronic devices like
 Arduino, Calliope mini, or Raspberry Pi computers. They are in-
expensive devices that can solve in-depth tasks, which makes
them ideal for schools.

The participants developed 11 teaching units in the fields of
’Fundamental Science in 1’s and 0’s‘, ’Microcontrolling the
World‘ and ’Environment 4.0‘. They are excellent examples of
what you could do in regard to the various curricula in biology,
chemistry and physics.

The Coding in STEM Education project was only possible due to
the efforts of our enthusiastic participants, who did all this
work in their spare time and in addition to their regular teaching
jobs. Thank you all for this inspiring publication. Many thanks
also to the other coordinators, Jean-Luc Richter, Bernd Schriek,
and Sebastian Funk, who all did a great job condensing the
heterogeneous thoughts and ideas of teachers from different
cultural and scientific backgrounds into one homogeneous
piece of work. I would also like to thank SAP SE and Gabriele
Hartmann and Jens Mönig in particular. Such a publication
would not have been possible without the ongoing support of
these professional partners.

Coding in STEM Education is a special booklet that has been
developed and tested by teachers for their colleagues in Europe
and beyond. Let it inspire you to start your own projects in
your classroom soon!

Dr Jörg Gutschank
Chair Science on Stage Deutschland e.V.

<6> Foreword

<Authors>
<Surname> <Name> <Country> <Section>

Abad Nebot Immaculada Spain Microcontrolling the World

Botelho Lúcio Portugal Environment 4.0

Compte Jové Pere Spain Microcontrolling the World

Fernandes Liliana Portugal Environment 4.0

Funk Sebastian Germany Coordinator

Georgoulakis Georgios Greece Fundamental Science in 1’s and 0’s

Giurgea Mihaela Irina Romania Fundamental Science in 1’s and 0’s

Gutschank Jörg Germany Coordinator Fundamental Science in 1’s and 0’s

Hančl Mirek Germany Microcontrolling the World

Ivarra Luc Belgium Fundamental Science in 1’s and 0’s

Karagiorgou Eleftheria Greece Microcontrolling the World

Lőkös Annamária Romania Environment 4.0

Meier Andreas Germany Environment 4.0

Mestvirishvili Ilia Georgia Fundamental Science in 1’s and 0’s

Nicolini Marco Belgium / Italy Fundamental Science in 1’s and 0’s

Padin Beatriz Spain Environment 4.0

Poncela Elena Spain Environment 4.0

Rațiu Camelia Ioana Romania Fundamental Science in 1’s and 0’s

Reis Jorge Portugal Environment 4.0

Richter Jean-Luc France Coordinator Environment 4.0

Schriek Bernard Germany Coordinator Microcontrolling the World

Shapakidze David Georgia Fundamental Science in 1’s and 0’s

Toma Corina Lavinia Romania Fundamental Science in 1’s and 0’s

Tsiliki Sevasti Greece Microcontrolling the World

Tsoutsoudakis Astrinos Greece Fundamental Science in 1’s and 0’s

van der Byl Sonja Germany Environment 4.0

Winckler Julia Germany Microcontrolling the World

Special thanks to Gabriele Hartmann and Jens Mönig from SAP SE for their support!
We would like to thank Holger Bach and Paul Nugent for their valuable advice during the editing process!

<7>Authors

Coding H2O
<Author> Beatriz Padin

<Author> Elena Poncela

<Keywords> water, sensors, efficiency, data acquisition,
environment, evaporation, condensation, solutions,
 mixtures, design, heat and temperature, heat conduc-
tors and insulators, solar energy, infrared (IR) radiation,
reflection

<Disciplines> physics, environmental science,
chemistry, computer science, mathematics

<Age level of the students> 13–15

<Hardware> Arduino[1], Calliope mini[2], Raspberry Pi[3]

<Language> Arduino[4], Python[5], block programming

<Programming level> medium

<Summary>
The students will design, build and test a solar still to purify
water. They will program sensors to measure the efficiency of
their solar stills.

<Conceptual introduction>
We will cover the following physics concepts:

 ↪Changes of state (specifically, evaporation and conden-
sation) and their main characteristics
 ↪Factors that affect the evaporation process (temperature,
surface area, etc.)
 ↪Effects of heat: changes of state
 ↪Difference between renewable (solar energy) and non-
renewable energy sources
 ↪ IR radiation and its role in transporting heat from the sun
 ↪Radiation and its reflection on certain surfaces
 ↪Methods for separating mixtures
 ↪Solutions: what they are, concentration (g/L and mass per-
centage, etc.)

Depending on the students’ prior knowledge, they will discover
some of these concepts by themselves, while others will have
to be explained by the teacher and experimentally validated
by the students.

The aim of our project is to design and build the most efficient
solar still to purify water. Only solar energy may be used. First,
the efficiency of the solar still will be determined by calculating
the volume percentage of the purified water that is obtained.
After this, the students will program different sensors to ana-
lyse the effectiveness of their designs.

The main task of this activity is to program sensors, so the
teachers will need programming skills and some basic hard-
ware knowledge to do so.

They will need to know how to build the circuit required to
 connect the sensors to the microcontroller board. Depending
on their skill level, they can either use block programming
(Calliope mini[2], Snap4Arduino[6], etc.) or text programming
(Arduino[4], Python[5], etc.) to program the sensors.

<What the students/teachers do>
This unit consists of three parts: designing and building a solar
still, coding sensors and testing the solar still.

<Part one: Designing and building the solar
still>
The project will be presented to the students and they will test
their initial example of a solar still as a class by measuring the
amount of cleaned water collected and calculating the efficien-
cy of this design. While doing so, they will review physics con-
cepts such as changes of state, solutions and solar energy.

Next, the students will be encouraged to improve this initial
design. To do so, they will have to work in groups (2–3 stu-
dents per group). This phase of the unit can be divided into
 different tasks:
1. The students will search for information about solar stills,

how they work, different designs already in use, etc.
 During the research process, they will be asked to reflect
on the following questions:
a. Evaporation process: what are the main factors affect-

ing this process? Think about the surface where you
are going to place the dirty water. Is it better to have a
wide or a narrow surface, a larger depth or a smaller
one? Does the colour of the container matter?

b. Condensation process: what is necessary to produce
condensation? Do you need to design a large or a small
surface for water condensation? How are you going to
make the clean water move to the point where you
wish to collect it?

<Info>

 e Solar still

<9>Environment 4.0: Coding H2O

c. Radiation process: how can you maximise the IR radia-
tion hitting your solar still? How can you reach the
maximum temperature possible in your solar still?
Consider using a surface covered with aluminium foil to
reflect the sunlight into the solar still.

2. The groups will create their designs and explain them to
the teacher.

3. Once the teacher has approved the design, the students
will be asked to find the appropriate materials (at school,
at home, order online, etc.) and build their still.

4. The students will determine the efficiency of their solar
stills without sensors. Using a graduated cylinder, they
will not only measure the volume of dirty water but also
the volume of clean water collected and apply the follow-
ing mathematical equation:

Efficiency =
volume of water collected

volume of dirty water

A step-by-step guide including tasks and questions for the
students is provided for the second and third parts of this ac-
tivity.

The aim is to give the students different choices with regard to
sensors, programming languages and hardware, but this also
depends on each individual school/class (available materials,
programming language knowledge, etc.).

<Part two: Coding sensors>
Only the best solar stills will be tested using sensors. In this
part, you will need to:
1. Select the microcontroller board, programming language

and sensors that you are going to work with. Answer the
following questions to help you make the best decision:
a. Will you use block programming or text programming?

If you choose block programming, consider using a
 Calliope mini[2] or, alternatively, program a Raspberry
Pi[3] with Scratch[8]. In case you opt for text program-
ming, you could use an Arduino[1], or code in Python[5]
for Raspberry Pi[9].

b. Are you going to use digital or analogue sensors? If you
decide on the latter, Arduino could be the best choice.

2. Choose the sensors that you want to use. To keep things
simple, please select no more than two sensors. Some
 examples are temperature, humidity, rain and IR radiation.
Before making your decision, consider the specifications
of each sensor. Is the output signal analogue or is it a digi-
tal signal with only two possible values (true/false)? How
does the output signal relate to the value of the parameter
that you are measuring? Are they directly proportional?
Does the output increase as the parameter decreases?

3. Build the circuit to connect your sensor to the microcon-
troller board. Use the additional resources provided[7] or
search the Internet for examples.

4. Code the sensors. You must follow these steps:
a. Write down what you want your program to do, con-

sidering the features of the sensors that you have
 selected. Do you want your program to only display the
value of the measured parameter? Do you also want to
show the maximum and minimum values? Does your
sensor show the actual value of the parameter or do
you need to make any calculations?

b. Write your program. Do not forget to write comments
on your code. You can use the additional resources pro-
vided by your teacher as a guide.[7]

5. Test your code. Does the program work as expected?
Examples:

 ↪ You can measure the amount of infrared radiation that
reaches the solar still with a flame sensor and an
 Arduino UNO[1]. If you are using a surface covered with
aluminium foil, use this sensor to test whether the
 radiation is reflected into the solar still.

 ↪ You can record the maximum temperature and the
 relative humidity reached inside the solar still with the
DHT11 or DHT22 humidity and temperature sensor and
your Arduino UNO.

 e Flame sensor

 e Arduino with humidity sensor

<10> Environment 4.0: Coding H2O

 ↪ You can write a Python 3 program to determine the
time that it takes for the first water drops to condense
with the FR-04 rain sensor and Raspberry Pi[3]. You can
also use this sensor with a Calliope mini and program it
with Snap![10] (block programming language).

<Part three: Test the solar stills with
 sensors>
Your team has to use the programmed sensors to test and
compare your design with another one. The solar stills have to
work under the same conditions and use the same type of
sensors for this to happen.

You will analyse the reasons why the efficiencies are different,
noting key facts like the factors that affect evaporation, etc.

How to improve the efficiency of the solar still:
 ↪Test it on a sunny day over the midday period.
 ↪Allow your equipment sufficient time to reach the highest
temperature possible.
 ↪Make sure the solar still is airtight to avoid any loss of
 water vapour.
 ↪Remove the clean water on an ongoing basis to prevent it
from evaporating.
 ↪Colour the dirty water to ensure that the solar still works
properly.
 ↪Choose a wide, black container for the dirty water.
 ↪ Use an umbrella covered with aluminium foil to reflect
 sunlight into the solar still.

<Results>
The first part of the activity (building the solar still) led to de-
signs that varied greatly in their efficiency. When tested on
sunny days during May/June in Spain, the best design purified
95 % of the dirty water in 24 hours. A 54 % efficiency rate was
also obtained in 4 hours. Nevertheless, some stills collected
no clean water at all due to various deficiencies in their design.

When applying the sensors, the students obtained the follow-
ing results:

 ↪The maximum temperature reached inside the solar stills
after one hour on a sunny day was 65 ºC.
 ↪The influence of the colour of the container on the dirty wa-
ter was analysed. Upon comparing a white and a black con-
tainer left in the sun for a few minutes, the temperature of
the water in the black container was found to be almost
5 ºC higher than in the white one.
 ↪The relationship between the temperature of the water and
the rate of evaporation was studied using the humidity
sensor. The relative humidity obtained inside a solar still
that contained water at room temperature was measured
at 55 %. When the water was heated to 45 ºC, the relative
humidity increased to 98 % in just a few seconds.
 ↪The amount of radiation reflected by a metallic surface into
the solar still was measured with the flame sensor. An old
umbrella covered with aluminium foil was very effective in
reflecting IR radiation.

 e Arduino with temperature sensor

 e Arduino with LCD display and humidity sensor

 e Rain sensor with a Calliope mini

<11>Environment 4.0: Coding H2O

<Conclusion>
The students will use their creativity and higher-order thinking
skills (HOTS) to design the most efficient solar still. This unit
will also give them the opportunity to develop their critical
thinking and problem-solving skills, which is very useful be-
cause the students can utilise them on a daily basis. They will
learn some key physics facts (self-learning) by observing, ex-
perimenting, testing and analysing their results, instead of
simply reading about them in their physics textbooks.

They will also develop computational thinking skills while cod-
ing their sensors. They will be doing physical computing (i.e.
their codes will interact with the physical world). Throughout
the unit, they will follow the different steps of the scientific
method outlined above to develop the best solar still design
and then build it with suitable materials.

It is important that every student is involved in the project
tasks. Some tasks can be done individually (searching for in-
formation, collating their initial ideas about the design…) to
ensure that this happens.

However, the main obstacle is that some students may not
have the appropriate programming skills (which is why we
have included block programming alternatives), sufficient
knowledge to build the circuits (the additional resources[7] are
very helpful in this regard) or may not understand how the
sensors work. In addition, the materials may not be available
in all schools, so they may need to be bought.

Extension activities:
 ↪The data collected from the sensors could be stored on an
SD card for further analysis.
 ↪An LCD screen could be used to visualise the measure-
ments.
 ↪ Internet of Things (IoT): the data collected could be sent
through the Internet in real time so it is publicly available.
 ↪Additional sensors could be used, such as CO₂ or other
greenhouse gas sensors, a conductivity sensor to check
whether the clean water is still salty, a pH sensor to
 measure the pH of the dirty and clean water, etc.
 ↪The salinity could be measured with seawater samples.
 ↪A method to disinfect the collected water could be added.

The students could use the solar stills to study the greenhouse
effect, photosynthesis, cell respiration, ideal gases, etc. Many
sensors could be used in other projects to measure physical or
chemical parameters; for example, to monitor air pollution or
water quality.

<Cooperation activity>
Are solar stills more efficient in countries with sunny weather?
Students from different European schools could share their re-
sults, using an online map for location purposes. The salinity
of the different places could be compared by taking seawater
samples.

<References>
[1] www.arduino.cc/
[2] https://calliope.cc/en
[3] www.raspberrypi.org
[4] www.arduino.cc/reference/en/
[5] www.python.org/
[6] http://snap4arduino.rocks/
[7] All additional materials are available at

www.science-on-stage.de/coding-materials.
[8] https://scratch.mit.edu/
[9] www.raspberrypi.org/documentation/usage/python/
[10] https://snap.berkeley.edu/

<12> Environment 4.0: Coding H2O

<13>Environment 4.0: Coding H2O

How Water
Works
<Author> Lúcio Botelho

<Author> Liliana Fernandes

<Author> Jorge Reis

<Keywords> water, image processing, data acquisition,
 microclimate, robots

<Disciplines> mathematics, biology, social studies,
 robotics, arts

<Age level of the students> 6–10, 11–15 and 16–18

<Hardware> <easy level> Calliope mini[1], LEGO We Do
2.0[2], small learning bots[3], WeeeMake[4]
<medium level> LEGO EV3[2] with LEGO ultrasonic and
 colour sensors, or Anprino[5] with Arduino[6] and appro-
priate ultrasonic[7] and colour sensors[8]
<advanced level> computer with Internet access

<Language> Snap![9], Scratch[10], WeeeCode[4],
Open Roberta[11], LEGO Blocks[2]

<Programming level> easy, medium, advanced

<Summary>
This unit was designed to be transdisciplinary in nature, i.e.
 facilitate collaborative work between students of different
 levels, from primary to secondary school age. Alternatively,
each part can be taught at its own level individually. Starting
with a computational thinking approach, to coding in Scratch[10],
through to programming robots and an ecological house, in
the teaching unit ‘How Water Works’ students will discover
everything about the topic of water.

<Conceptual introduction>
This project is all about water, its role in our life and our role in
preserving it. Divided into three levels (easy for primary
school students, medium for middle school students, and
 advanced for secondary school students), this project can be
adjusted for collaborative work at different school levels and
in cross-curricular activities.

<What the students/teachers do>
<Easy level: Where does water come from?>
The students will be challenged to investigate where water
comes from. The teacher will ask questions to stimulate the
students’ interest and then … the adventure will start! The
students will research, learn and then share their findings
with their classmates. At the same time, the students will start
to develop their computational thinking skills with easy chal-
lenges that teach them how to program simple bots.

After finishing their research, the students will start to work in
small groups and build some beginner projects using the
demo modes of the WeDo 2.0 app[12] with special emphasis on
water-related tasks.

Then the students must build an ecological solution, using any
bricks or set they want, in which they present an innovative
approach to save water.

In the example below, the students built an ecological house[13]
and combined it with some extra bricks and the WeDo 2.0 set.
Then they added a rainwater collector connected to a filter
(coded with the LEGO app) that directed the water into the
farm so the animals could drink fresh water (e1).

At the same time, the students, still working in small groups,
will start to plan and design new mats related to water for
small learning bots that could be programmed without a com-
puter. By presenting their mats to other students, they will
 motivate them to code and learn about water at the same time.
The students can use various low-cost learning robots to do
the task.[3]

Full instructions on how to print the mats are available online.[14]

You will also find a link to a step-by-step unit plan in the addi-
tional online material.[14]

<Info>

 e 1: An ecological house

 e 2: Students designing mats

Environment 4.0: How Water Works <15>

<Medium level: Building a water dam cleaning
robot >
The dam cleaning project is about a robot that travels through
the water reservoir created by a dam and detects solid waste.

This project has two versions, using two different robots. The
LEGO version (e3) uses the EV3 LEGO Education kit; the
 Anprino robot[5], which is printed using a 3D printer and then
assembled, is the work base in the Arduino version (e4). The
Arduino microcontroller[6] and its range of accessories are
 attached to the Anprino.

Start by building the water reservoir model using paper or
cardboard. It should measure about 2 m × 1 m and be painted
blue to simulate water. Build the shores using strong card-
board to limit the robots’ room to move, and simulate the
waste with pieces of black cardboard.

Ultrasonic sensor

An ultrasonic sensor [7] generates sound waves to detect and
measure the distance to the objects. It can also send sound
waves to function as a sonar or receive a sound wave that
starts a program mode.

Using the ultrasonic sensor, the robot can detect obstacles
and react in different ways, depending on the code. The robot
could be programmed to stop or change direction, for example.
In the dam model, the obstacles are the cardboard shorelines.

Colour sensor

The colour sensor[8] can detect different colours and the ab-
sence of light. It works as a light sensor as well by detecting
varying intensities of light. Students can build different colour
lines for the robot to follow.

 e 3: The LEGO version e 4: The Anprino version

 e 5: Model of the dam reservoir

 e 6: A LEGO ultrasonic sensor

 e 7: Robot stops/Robot changes direction

 e 8: An example of a colour reading sensor: It distin-
guishes colours by reading their RGB code.

Environment 4.0: How Water Works<16>

Building code, using LEGO programming blocks

The students must build different models to simulate distinct
kinds of waste, such as domestic, industrial, tourism-related,
organic, etc. The main goal is for the students to become
aware of river and dam pollution. The students must simulate
a waste detector assembled in a boat and then plan and build
a waste collector boat at a later date.

The robot must play a particular sound for every type of waste
that it detects. To achieve this, we use the colour sensor and
specific colour ’stains‘ that simulate each type of waste.

The students can consult the publications of environment/gov-
ernment organisations and build the different stains accord-
ing to pollution statistics.

The students will go on field trips to rivers and dams to exam-
ine the water quality and any pollution. They must then simu-
late these observations in the models that they build. With the
help of the robot, they should scan and note the results in a
table (e10).

When the students have collected enough results, they must
present their research to the class. The goal is for the students
to develop their critical thinking, investigation and coding
skills. When the students look at what is happening in our wa-
terways, they will see the consequences of centuries of blind-

ness to environmental issues. To be able to understand this,
they must have acquired the requisite environmental skills to
intervene in their community. For example, this could be by
alerting people to the need to prevent behaviour that damages
the environment and water in particular. Additionally, they
must also be able to plan and present solutions when they de-
tect problems. The overall goal is to increase their civic partic-
ipation and sense of environmental responsibility in their
community.

Please note: our students have already built and tested the
LEGO version and are still in the process of improving the Ar-
duino version. The complete code used to program the Arduino
is available online.[14]

<Advanced level: Programming educational
 environment-related games>
The main goal is for the students to become aware of water
pollution. The students will use Scratch[10] to program games
that motivate others to help to preserve and protect water and
thus encourage people not to throw waste into bodies of water.

Our first game simulates a little fish in the ocean. The fish has
to feed while, at the same time, avoiding other marine crea-
tures (sharks and crabs) and falling waste (glasses, cans,
etc.). The more it eats, the bigger it gets, and the more points
the player earns in the process.

The fish must not collide with waste and other fish or it gets
hurt and receives a bandage. When it has three bandages, the
game is over. This game is funny and not only sensitises chil-
dren but also adults to the increasing amount of waste in our
waterways (oceans, rivers, etc.).

The second game is based on a well-known video game, where
a frog has to cross a street. But in our case, the character has
to cross a river (using the logs as the water flows quickly) and
avoid rubbish as well as other animals (bats and snakes). It
can also eat flies to gain extra points.

 e 9: An excerpt from the LEGO programming; the complete
diagram is available online[14]

 e10: Table for waste scan, data related to two different excursions and waste collected in each one
by the cleaning teams from the school’s environment club

Date

Type of waste

Cleaned
AreaDomestic Industrial

Undifferen-
tiated Organic Others

Excursion
April 2018

3.450 kg 32 kg 8 kg 100 m2

Excursion
May 2018

0.730 kg 6 kg 100 m2

Environment 4.0: How Water Works <17>

In this game, there are four different scenarios and one is se-
lected randomly at the beginning of each round. The frog
(sprite) has three lives, after which the game ends.

The following section contains details about the program.

e11 shows the part of the program that controls the move-
ment of some of the enemies in the various game modes. In
the displayed example, the enemy disappears when it touches
any of the edges. As long as it is not touching the edges, it re-
peats the same movement, which also increases in speed
with a 0.04 factor adjustment as the player’s score increases.
This is a very clever way of making the game a little more chal-
lenging as the score increases with the increasing level of
 difficulty.

Game start: choose one of three game modes (e12). At the
moment, two games are ready and the students are develop-
ing a third one called Game mode 2.

For example, Game mode 2 could be in a pond where ducks
have to catch some food.

Ducks regularly eat small fish and fish eggs, snails, worms,
molluscs, and small crustaceans such as crayfish, grass,
leaves, weeds, algae, aquatic plants, roots, small frogs, sala-
manders and other amphibians. Additionally, the ducks must
try to avoid other ducks or waste in the pond (or in advanced
levels, random poachers).

If the fish touches any of the enemies (1, 2, or 3), it loses one
life and a sound is heard.

If the player loses all of his/her lives, the game is over, i.e. all
the scripts are stopped (e13).

 e 11: Scratch program enemy control

 e 12: Scratch program game start

 e 13: Scratch program enemy 1–3

Environment 4.0: How Water Works<18>

The game is very well programmed and constructed because
the same code is used for the two versions of the game. The
same sprite changes its costume from ’Shark‘ to ’Bat‘.

The students will all learn to improve this program by providing
new ideas or helping with innovative coding solutions so that
the code can be even better and more fluid.

This is possible because the games have similar goals:
 ↪avoid enemies
 ↪catch food/flies
 ↪ losing 3 lives means the game is over
 ↪earn points (the fish by eating fish food, the frog by eating
flies and reaching a new scenario)

They will use clones of the sprite enemy so that they can make
the same sprite appear from different directions and have dif-
ferent behaviours (directions) in the game.

The full program is available for download.[14]

<Conclusion>
In this unit, the students will work collaboratively with their
peers and their community, and learn and share their knowledge
about water: water cycle, water shortage, pollution, etc. They
will also develop resources to monitor, save and protect water.
At the same time, the students will develop investigative tools
and coding skills, as well as skills in the field of robotics. When
the oldest students mentor and support the younger ones,
they all will motivate and challenge each other to advance
their work. This contributes hugely to the success of the projects.

At the end of this school year, we noticed that the students had
not only improved their programming skills but were also
more conscious of water problems and the dangers for ani-
mals and plants, which depend on clean water for the safety of
their habitats.

It is not easy to code several games in one. The games must
have some similarities so that the code from one can be adapt-
ed to serve all modes. However, it is a clever way to save on
coding resources.

We chose to work together, although in different schools that
are far away from each other, because it allowed us to share
ideas and improve the collaborative work between students of
varying (social and economic) backgrounds and ages. It was
not easy to meet face-to-face or to get the students together
as much as we intended, but it turned out to be a good option
as it allowed the students to share their ideas and methodolo-
gies and to interact with unknown peers, which improved their

communication skills. It also offered them the possibility to
participate in different competitions and to discuss their re-
sults and come up with improvement tips with other students.
An alternative to personal meetings could be to communicate
online via video conferences. Finally, the students were able
to share their work with the community and play a part in
changing local attitudes towards water protection.

From this unit, you can challenge your students to develop
other ideas and concepts on the topic of saving water, and con-
tribute to improving environmental behaviour in your commu-
nity and thus reducing the students’ and hopefully the com-
munity’s carbon footprint in the process.

<Cooperation activity>
‘Science on Stage is about sharing resources among teachers!’

As a result of this project, a community of teachers was
strengthened and resources as well as ideas were shared. This
has contributed to better student learning throughout Europe.
Sharing and collaborating is the best way for us all to improve
and further develop these projects.

<References>
[1] https://calliope.cc/en
[2] https://education.lego.com
[3] Possible bots: Bee Bots from tts, DOC from Clementoni,

Jack from Imaginarium
[4] www.weeemake.com/
[5] Anprino is a robot developed by the Portuguese National

Association of Teachers of Information Technology
(ANPRI); information and 3D printing files www.anpri.pt/
anprino/index.php/anprino-luis (29/11/2018)

[6] www.arduino.cc/
[7] We used the HC-SR04 ultrasonic sensor.
[8] We used the BE15000624 light sensor.
[9] https://snap.berkeley.edu/
[10] https://scratch.mit.edu/
[11] https://lab.open-roberta.org/
[12] https://education.lego.com/en-us/downloads/wedo-2/

software (29/11/2018)
[13] LEGO SET 31068
[14] All additional materials are available at

www.science-on-stage.de/coding-materials.

Environment 4.0: How Water Works <19>

http://www.anpri.pt/anprino/index.php/anprino-luis/
http://www.anpri.pt/anprino/index.php/anprino-luis/
https://education.lego.com/en-us/downloads/wedo-2/software
https://education.lego.com/en-us/downloads/wedo-2/software

VPLS —
Vacation Plant
Life Saver
<Author> Andreas Meier

<Author> Sonja van der Byl

<Keywords> automated plant watering, using a micro-
controller to control a water pump

<Disciplines> computer science, natural sciences,
 technology

<Age level of the students> 10–14

<Hardware> computer (one per student if possible),
 Calliope mini[1] with a humidity and temperature sensor
(one per group)

<Language> Scratch[2] (online or offline), editor for
 Calliope[3] (online)

<Programming level> easy

<Summary>
The potted plants in school buildings often die during the sum-
mer break because nobody takes care of them—this is why
we need a Vacation Plant Life Saver. In this teaching unit, we
will develop a virtual and a real-life lifesaver for school plants.

<Conceptual introduction>
The project is suitable for all STEM subjects because the level
of programming required is basic. In the first section, the
 watering of plants at regular intervals is realised in virtual
terms. This will cover various control structures in computer
science such as object orientation, loops and conditions as
well as the use of variables. The students will do some basic
coding for the first time and work through a tutorial online in
‘Getting Started with Scratch’[4] (duration: 45 minutes).

Object Oriented Programming (OOP) is a type of programming
which lends an object properties (attributes) and capabilities
(methods). In our case, these objects are a cat called ‘Sprite’,
a watering can and a stage. Every object belongs to a class. All
the objects in the same class have the same properties and
capabilities. You can interpret a class as a blueprint and an ob-
ject as an instance, i.e. a concrete realisation of the blueprint.
In Scratch, figures are instances of the ’Sprite’ class, or in
short, ’sprites’. The cat called ‘Sprite’ is a sprite, i.e. an instance
of the ‘Sprite’ class.

One of the attributes of a sprite is its costume; in this case, it
is the image of a cat. Another instance of the ‘Sprite’ class
could have the image of a human as a costume and be called
Gunther. The cat ’Sprite’ and the human ‘Gunther’ are both
 objects (instances) of the ‘Sprite’ class or in short: both are
sprites. There are only two classes in Scratch: the stage and
the sprites. In this project, we have two sprites (the cat and
the watering can) and the stage (e1).

The second part of the project can be done after the first part
has been completed, or it can also be carried out independently
if the students know the previously mentioned control struc-
tures and have already gained initial programming experience
with the Calliope mini[1]. Microcontroller sensors which control
the valve of a water pump will be used instead of variables.

<What the students/teachers do>
All the required materials and worksheets are available for
download.[5]

<Part 1: Virtual regular plant watering>
Step 1: Coding a program with only one variable,

time; getting to know one-sided conditions and

loops (duration: 180 minutes).

After analysing the problem (‘How could a virtual Vacation
Plant Life Save work?’), the students will be asked to think
about the basic structure of such a program. They will then
make notes in form of a recipe (algorithm) and test each oth-
er’s ideas. Only after doing so will they agree on a common ba-
sic structure for the program (see Worksheet 1[5]).

This phase will help the students to think about the basic
structures of the program that they want to code. The key-
words ‘list of statements’, ‘loop’ and ‘condition’ are derived
from the context.

Now the students will realise the program in Scratch[2] by as-
sembling the individual components[5] provided into a work-
ing program. The students will learn more about Scratch and
the following aspects in particular in the process:

 ↪object orientation (each figure has its own script, even the
stage)
 ↪structure (What does the structure of a condition or a loop
look like in Scratch?)
 ↪script/costume/sounds can be assigned to each individual
figure

<Info>

 e 1: The virtual Vacation Plant Life Saver

Environment 4.0: VPLS—Vacation Plant Life Saver <21>

Additionally, the students will learn more about the basic
structure of the plant watering program while thinking about
how best to order the individual parts of the code to make the
program work. It is especially important to decide which state-
ments need to be inside the counting loop (e2 & 3); this can
be done by trial and error.

Based on the program assembled in the section prior to this,
the students will now be able to create their own program in
which the cat ‘Sprite’ moves to the plants and waters them
 according to the variable time. The only file that the students
will be given is the stage for the starting scene.[5]

The students will be encouraged to investigate the program-
ming language independently to test out their own ideas and
be creative. It is important that the students are able to use
the requisite programming language with confidence (accord-
ing to their respective level of knowledge); this way it will be
more enjoyable for them.

Step 2: Write a program that incorporates the

 ‘water level’ and ‘temperature’ variables

 (required time approx. 270 minutes).

As an introduction to the second step of the teaching unit, the
students will think about other factors that determine how
 often a potted plant must be watered. The ‘room temperature’
and the ‘water level’ in the plant container will certainly play a
role here as changing variables (see Worksheet 2[5]).

The students will receive a working program in which the
scripts for the cat ‘Sprite’ and the watering can are nearly the
same as before.

However, there will be a new script for the stage which controls
the ‘water level’ variable in place of the previous timer. The cat
will only water the plant once. The students will be encouraged
to think about how the ‘water level’ variable can be defined on
the one hand and how it controls the activity of the cat. On the
other hand, they will be tasked with solving the problem so
that the plant is only watered once. There is a help file avail-
able if required.[5]

By using only one variable, the program will stay clearly struc-
tured. It might be too challenging for a beginner programmer
to coordinate several variables at once.

The loop structure that is used is more complex than before as
it is connected to a condition (e4). The students will need to
think carefully about what needs to be repeated, how often
and under what conditions.

The ability to structure is fundamentally important in learning
any programming language, but it will be taught in a very fun
way; the students will be able to try out everything without
any negative consequences.

Fast learners will also have the opportunity to change the pro-
gram and try out their own ideas at the end of this work phase.

In the next step, the ‘temperature’ variable plays a role in the
program. Its value is determined by a random number generator,
which provides a number between 15 °C and 30 °C. The water
level in the plant container changes, depending on this value
(Worksheet 3[5]).

 e 2

 e 3

 e 4

Environment 4.0: VPLS—Vacation Plant Life Saver<22>

Since the program structure of the ‘new’ watering program is
quite complex, a disassembled program should first be re-
assembled into a functioning program[5].

The random number generator and two-sided conditions will
then be introduced. In addition, the students repeatedly work
with variables as well as query conditions and deepen so their
understanding of them. Again, the students will need to think
carefully about what needs to be repeated, how many times
and under what conditions (e5).

As in the previous step, the students will be given the opportu-
nity to customise the resulting program by working according
to their ideas and programming ability.

At the end of the first part of the project, where the Vacation
Plant Life Saver was realised in virtual terms, a wide variety of
programming results should be presented to acknowledge the
ideas of the students and recognise their performance.

<Part 2: Regular watering of a plant
controlled by a microcontroller>
During the project, it quickly became clear that some students
were not satisfied with the virtual solution to the watering

problem. They asked about ways to water real plants with the
help of their program. The virtual watering program is relative-
ly easy to transfer to a real VPLS using a microcontroller, espe-
cially as many of these mini-computers can also be pro-
grammed with Scratch[2] or a similar app. In our project, we
use the Calliope mini[1], a microcontroller similar to the BBC
micro:bit[6], which also contains user-friendly ‘plug-and-play
functions’ such as touch sensors and motor connections.
However, the VPLS can also be controlled with all other micro-
controllers commonly used in schools, such as LEGO EV3,
LEGO NXT, Arduino, Raspberry Pi, Teensy, etc.[5] It is a simple
process to program the Calliope mini, as you only need to con-
nect it to the computer via a USB cable. Open Roberta Lab[7],
which supports various microcontrollers (alternative editors
are available[5]), is a suitable programming interface. The pro-
gramming interface is available in different languages and
you can change the language by clicking on the globe icon af-
ter you selected a microcontroller, in our case the Calliope mini.

A simple version of the VPLS could work as follows:
1. The humidity of the soil is constantly measured.
2. If the soil is too dry, a certain amount of water is pumped

in until the soil is humid enough.

Therefore, the microcontroller must be able to measure the soil
moisture and control the motor of a water pump.

The Calliope mini has four touch sensors. The physics behind
them is that they measure the electrical conductivity between
the connection points. As water conducts electricity, humid
soil has a higher conductivity than dry soil. You simply use two
copper wires as sensors, which you then put into the flowerpot
some distance apart. They are then connected with crocodile
clips to the Calliope mini with the contacts at the corners
(–, P1). The output value of the sensor P1 (analogue pin) will
be between 0 and 1023. If the conductivity decreases to a cer-
tain value, the pump that waters the plant will be activated
(see e6).

 e 5

 e 6: VPLS controlled by a Calliope mini

Environment 4.0: VPLS—Vacation Plant Life Saver <23>

An essential component of the pump is a small electric motor,
which is connected to the Calliope mini either directly or with
the help of an additional motor driver, depending on the level
of power required. Two motor ports (A, B) are available in the
Action/Move menu. The water quantity of the pump can be ad-
justed by changing the ‘speed %’ value.

A certain level of craftsmanship is of course required to con-
struct the pump and to build the motor driver. We provide the
requisite construction manuals in the online material[5]. The
pump costs just a few euros.

While they are working with the real VPLS, the students will
come up with numerous questions on how to optimise it,
which will deepen their knowledge in the process; for example:

 ↪Do our plants need a lot of water, or just a little? How large
does the reservoir need to be?
 ↪What is the best time to water the plants? And, is it better
to water a lot only once a day or less but several times a
day?
 ↪At what depth should the humidity sensors be placed in the
soil to provide optimum measurements? What is the ideal
distance between the sensors?
 ↪How long does the power supply of the VPLS last? Can the
energy efficiency of the pump be increased so that the
VPLS waters during the entire school break?

As you can see, the VPLS project offers the students various
approaches from the fields of biology and physics for future
experiments or project work. Another interesting option would
be to connect the VPLS to the Internet and monitor online
 (Internet of Things). Although this would go far beyond our in-
troduction to programming with the VPLS, it shows what can
result from a simple question.

<Transferability to other programming
languages>
The project can easily be transferred to Snap![8], which is a fur-
ther development of Scratch[2]. Programming examples are
provided online[5]. These two programming languages are par-
ticularly well-suited for a project that is aimed at beginner pro-
grammers, because they are easy to understand and encour-
age the students to try out ideas by using ‘drag and drop’.

<Conclusion>
Students who are new to programming will take their first
steps into the field and learn important basics of a program-
ming language in the course of this project, which has its roots
in a real-life situation. The focus is not on learning the syntax
and vocabulary of a programming language, but rather on try-
ing out the effects of certain structures: ‘What works and
why?’.

Errors are welcome because they are usually easy to find and
to explain, and thus help the students to understand how a
programming language works.

On the one hand, the given framework gives students security
(whoever is unsure will only solve the puzzle of assembling
the provided program parts), and on the other hand, there is
plenty of room for creativity for those students who do the
‘mandatory tasks’ quickly.

Some ideas have emerged from the project, e.g. to build a ‘real’
watering robot or to develop a watering game. In any case, the
students gained positive initial programming experience that
hopefully will have a lasting and sustainable effect on them.

The time frame set at our school was sometimes difficult. We
only had 45 minutes to work on this project per lesson. The or-
ganisational part of the lessons alone (logging on to the com-
puter, opening files, saving files, logging off from the comput-
er) took 15 minutes, so there was insufficient time for real
programming and work. You can request teacher access at
Scratch[2], which will allow you to set up a class and deposit
materials.

<Cooperation activity>
Since the VPLS is an introduction to programming, there will
be very few possibilities for cooperation.

As soon as the project is transferred to the real-life control of a
microcontroller, cooperation between students would be use-
ful, as the degree of difficulty of the problem increases by
 using additional components (sensors, pump). For example,
older students could help to build the pump. Schools in differ-
ent countries could work on the VPLS project together and
compare their results and solutions.

A common database could be created for different plants to
adapt the VPLS to the individual characteristics of a variety of
plant species. If the VPLS is connected to the Internet, schools
could adopt plants from another school and take charge of the
watering.

Environment 4.0: VPLS—Vacation Plant Life Saver<24>

<References>
[1] www.calliope.cc/en
[2] www.scratch.mit.edu/
[3] www.calliope.cc/en/los-geht-s/editor
[4] https://scratch.mit.edu/projects/editor/?tip_

bar=getStarted (29/11/2018)
[5] All additional materials are available at

www.science-on-stage.de/coding-materials.
[6] www.microbit.co.uk/home
[7] https://lab.open-roberta.org
[8] https://snap.berkeley.edu/

Environment 4.0: VPLS—Vacation Plant Life Saver <25>

https://scratch.mit.edu/projects/editor/?tip_bar=getStarted
https://scratch.mit.edu/projects/editor/?tip_bar=getStarted

Magic Glove
<Author> Annamária Lőkös

<Author> Camelia Ioana Rațiu

<Keywords> experiment, environment, temperature,
 humidity, luminosity, magnetic field

<Disciplines> physics, chemistry, biology, ecology,
 computer science

<Age level of the students> 10–18
<Level 1> for primary school (age: 10–11) and
 secondary school (middle school, age: 12–15)
<Level 2> for secondary school (high school, age: 15–18)

<Hardware> Arduino UNO[1], sensors compatible with
 Arduino (e.g. light sensor, temperature sensor, magnetic
field sensor, humidity sensor, gas sensor), LCD button
shield, jumper wires, external battery

<Language> C[2], Arduino 1.8.5[3], Snap![4]

<Programming level> medium

<Summary>
Young people are passionate about technology, so a lesson that
combines science with computer science will be a successful
one. The students will build and use a glove with a different
sensor on each finger. This will allow them to carry out differ-
ent experiments by connecting only the necessary sensor.

<Conceptual introduction>
The advantage of using a device (a glove) equipped with
 several sensors for different measurements is twofold. Prima-
ry and secondary school students can use the ‘magic’ glove to
measure temperature, brightness, humidity, the presence of a
magnetic field, sound intensity, etc. All they have to do is select
the desired sensor and they are ready to start finding various
uses for the glove in different fields of study and school sub-
jects. The glove can be taken out in the field as it is powered by
a battery; this offers a possibility for the students to investigate
outside of the laboratory. On the other hand, high school stu-
dents can build a glove themselves to make certain determina-
tions. The students know the theoretical notions of the various
sciences (physics, chemistry, biology, ecology), and they truly
enjoy the opportunity to investigate them in practical experiments.

Teachers will need to present the basic concepts for coding a
program in C[2] or any other programming language supported
by Arduino, including Snap![4], for the students to code for
 Arduino[1]. To acquire a basic knowledge of C, if they choose it as
programming language for Arduino, the students can watch
tutorials on the Internet. This will help them to better understand
how the code should be written and also boost their confidence
since most of them will be surprised by just how simple the
code is.

<What the students/teachers do>
<Level 1>
The glove has an LCD display with buttons. The students put on
the glove and select the desired sensor with the UP/DOWN but-
tons; then they press the SEL button and the measurement
starts. The screen displays the value. The students can repeat
the measurements whenever they want. To return to the home
screen, they press the Back button. For example, you can see
the determination of the poles on a magnet in e1a–1c.

 e 1a–c: Determining the poles of a magnet

{ Magnetism
 Value: North

{ Magnetism
 Value: none

{ Magnetism
 Value: South

<Level 2>
Students in a class can be divided into four groups. One group
cuts and sews the glove, the second group makes the circuit,
the third group does the coding and the last group calibrates
the sensors.

<Making the glove>
The students made a template (e2) after consulting docu-
mentation on several websites[5]. They folded the material
(leather in our case, but other materials can be used) in three
and cut it using the template. To get the proper glove, the stu-
dents sewed two of the faces together. They stitched on the
last piece of material after they had mounted the Arduino with
LCD and sensors on the back of the palm. The students cut out
the opening for the LCD display and buttons from this third
piece.

<Info>

Environment 4.0: Magic Glove <27>

<Building the circuit>
The students made the circuit, starting from a schematic dia-
gram that they have discussed and analysed with the teacher
beforehand. The circuit can be fixed (tinned), or not. It must
take into account the correct connection of the sensors to the
Arduino board, namely the GND from the sensor to the GND on
the Arduino board, the Vcc from the sensor to 5V on the Arduino,
and the OUT on the sensor to one of the aNaLOG IN (A0, A1, A2,
A3, A4 or A5) on the board. If a sensor has to be connected to
the DIGITaL IN, care must be taken not to use one of the inputs
used for the LCD because operating errors will occur. In our
 example, we connected the following sensors: temperature
(A1), light (A2), humidity (A3), magnetism (A4) and proximi-
ty (A5) (see e3a–3e).[6]

<Writing the code for the circuit>
High school students who are studying the C programming
language[2] can easily program Arduino[1]. There are many tu-
torials available online in a multitude of languages. For exam-
ple, our students used a website in Romanian[7]. Tutorials in
English are among others offered on the Arduino website or on
the distributors’ websites.[8] There are also many other sites
where the students can find tutorials.

The teacher can guide them through how to write the program
for Arduino, and you can find the complete code that we used
online.[9]

<Calibrating sensors>
There are calibrated sensors available, but there are also un-
calibrated ones; it is sometimes more enjoyable for the stu-
dents to find a way to calibrate them. They found calibration
formulas for some of the sensors on the Internet. For example,
there is a formula for the humidity sensor brick[6], because the
function by which the displayed values vary is not linear.

With regard to the calibration of the temperature sensor, the
students tracked the values displayed by the sensor. They
used a calibrated thermometer in the lab and associated the
displayed value with the thermometer value. They discovered
that this sensor varies linearly and found the calibration for-
mula. There are examples with the calibration formulas for the
humidity and temperature sensors in the additional material
provided.[9]

Once the students have calibrated the sensors, completed the
program and checked the display to ensure that the fingers of
the glove are properly correlated with the data appearing on
the screen, the glove is then mounted. The last step is to
stitch/sew the outer layer of the material. The students used

 e 2: Templates for the glove

 e 3a–e: Sensors

Temperature

Light

Humidity

Magnetism

Proximity

Environment 4.0: Magic Glove<28>

some fastening rings for each sensor on each finger (e4) to
better fix the sensors.

<Algorithm to use in other languages>
If you would like to use another programming environment, a
diagram with all the necessary elements for the main program
is available online.[9]

<Conclusion>
Students enjoy discovering new things and are very inventive.
They like to make experimental determinations, and the glove
looks as though it came from a science fiction movie. High
school students will enjoy the coding elements of the unit and
see the results immediately in something practical that actu-
ally works.

This experience was an unprecedented one, and the teachers
and students learnt many things together.

They did encounter one difficulty: it is not easy to find the right
sensors[6] and calibrate them, but there are solutions. If a cali-
bration formula cannot be found, a solution lies in purchasing
calibrated sensors even though they are more expensive.

This glove could also be constructed using a Calliope mini,
which would make it lighter and smaller. Our students are in-
terested in trying to make such a glove even if the program-
ming language is different.

<Cooperation activity>
Students from different schools and countries could make
such gloves using various microcontrollers and suitable sen-
sors, and then discuss and compare the results. An art teacher
could be asked to contribute to the design of the glove. Addi-
tionally, a contest between schools could be organised, in
which the students propose different designs themselves.

The glove is easy to send by mail, so students in different
schools could experiment with the gloves made by their peers
in other schools and other countries.

<References>
[1] www.arduino.cc
[2] https://en.wikipedia.org/wiki/C_(programming_language)
[3] www.arduino.cc/en/Main/Software
[4] https://snap.berkeley.edu/
[5] Several websites with documentation and tutorials on

how to sew gloves:
http://ofdreamsandseams.blogspot.ro/2012/04/1950s-
hand-sewn-leather-gloves.html,
https://so-sew-easy.com/easy-gloves-pattern-winter-
comfort/,
http://sew-ing.com/make/gloves.html,
www.glove.org/Modern/myfirstgloves.php,
www.instructables.com/id/How-to-Make-Gloves/
(all December 2018)

[6] We used the sensors in ‘sensor kit 37 in 1’ for Arduino.
The humidity sensor is Humidity Sensor HIH-4030, brand:
Sparkfun, code: SEN-VRM-09.

[7] www.robofun.ro (Tutorials in Romanian. Every product
has instructions on how to connect it to the circuit and
what programming language to use. The website contains
diagrams and drawings, sensors or other components
that can be recognised from the photos, and the program
is very easy to follow. This means that the students do
not need to have any knowledge of the Romanian lan-
guage.)

http://mthackathon.info/resources/37-SENSOR-KIT-
TUTORIAL-FOR-UNO-AND-MEGA.pdf (tutorials are in English;
they contain instructions on how to connect the sensors
of the kit to Arduino) (December 2018)

[8] All additional materials are available at
www.science-on-stage.de/coding-materials.

 e 4: Fixing the sensors

Environment 4.0: Magic Glove <29>

http://www.arduino.cc
https://en.wikipedia.org/wiki/C_(programming_language)
https://www.arduino.cc/en/Main/Software
https://snap.berkeley.edu/
http://ofdreamsandseams.blogspot.ro/2012/04/1950s-hand-sewn-leather-gloves.html
http://ofdreamsandseams.blogspot.ro/2012/04/1950s-hand-sewn-leather-gloves.html
https://so-sew-easy.com/easy-gloves-pattern-winter-comfort/
https://so-sew-easy.com/easy-gloves-pattern-winter-comfort/
http://sew-ing.com/make/gloves.html
http://www.glove.org/Modern/myfirstgloves.php
http://www.instructables.com/id/How-to-Make-Gloves/
https://www.robofun.ro
http://www.science-on-stage.de/coding-materials

Science
Friction
<Author> Ilia Mestvirishvili

<Author> David Shapakidze

<Keywords> friction force, stopping distance, anti-lock
braking system (ABS), app programming, data acquisition

<Disciplines> physics, computer science, mathematics

<Age level of the students> 14+

<Hardware> Arduino[1], servo, motor, Bluetooth module,
motor shield, photogate

<Language> Arduino programming environment[2],
AppInventor[3], Snap4Arduino[4], Blockly[5]

<Programming level> easy, medium

<Summary>
An investigation of the factors affecting the force of friction
can be turned into an interesting and entertaining experiment
by building a low-cost Bluetooth controlled car with a simple
braking system. This will enable the students to observe real
data such as the car’s speed (absolute value of velocity) be-
fore applying the brakes, its stopping distance, and how the
mass of a car and the type of surface affect friction force. The
students will then conduct experiments to investigate the re-
lationship between the factors affecting the stopping distance
with sufficient precision to check their own hypotheses or
those suggested by the teacher.

<Conceptual introduction>
Friction is a very important force in everyday life and is taught
in physics at both middle school and high school level. How-
ever, traditional experiments related to the topic of friction are
limited and not much fun. This project will turn the exploration
of friction into an exciting group project which involves:
1. building and fine-tuning a car
2. programming an Arduino[1] microcontroller to measure

 instantaneous speed and stopping distance
3. programming a mobile phone using AppInventor[3] to

send, receive and display real data on the phone screen

<What the students/teachers do>
Since these three tasks can initially be done simultaneously,
we recommend that the teacher divides his/her class into
groups of two to three students, who then work on the tasks
separately, but come together to discuss and revise their work.

When friction is introduced in a particular curriculum, the
teachers could offer the unit about friction in conjunction with
this project, which will motivate the students and improve
their understanding of the related theoretical concepts. The
best way to start the project would be to pose the following

questions to your students and give them time to brainstorm
and come up with their own ideas, predictions or hypotheses:

 ↪What is the relationship between the speed of a car and the
stopping distance? (Answers might vary of course, i.e.
‘the stopping distance is proportional to the speed before
applying the brakes’, or some might ‘remember’ from
 physics that the stopping distance is actually proportional
to the square of the speed.)
 ↪How would increasing the mass of a car affect the stopping
distance, provided that everything else is unaffected?
(A popular answer is that increasing the mass should
 increase the stopping distance.)
 ↪How should we apply the brakes to stop a car as quickly
as possible? (Possible answers: the best way is to stop
the wheels completely; if we make them rotate in the
 opposite direction to the motion, this will stop the car
more quickly; etc.)
 ↪ If both the front and rear brakes are identical, will they stop
the car at the same time? (The students can reflect on
their own experience with bicycles.)
 ↪Any other questions that might come from the teacher or
the students.

After the students have written down their initial ideas, the
next step will be to think about how to build a simple car and
the data that they will require to check and further develop
their initial ideas. The teacher can facilitate this process and
suggest that the students build a car that is able to collect and
send relevant data to a phone, which in turn can control the car
as well as receive and display the data.

Based on their interests, skills and preferences, at this stage
of the project students can split into the previously mentioned
groups if desired. However, just one group of students can do
all these tasks as well. The next steps of the project develop-
ment will be the same for either scenario.

<Building a chassis and mounting the
electrical components>
This approach involves building a car from the low-cost and
readily available Arduino[1] chassis kit depicted in e1. Teachers
and students are encouraged to try different approa ches to
design and implementation, for example, different ways to
 collect and send data, and control the car remotely as well as
different software and languages to write the necessary code.

After assembling the car and deciding where to mount the Ar-
duino controller and the motor, the students will need to think
of different ways to measure the speed of the car. The recom-
mended approach is to brainstorm and give the students an

<Info>

<31>Fundamental Science in 1’s and 0’s: Science Friction

opportunity to propose some ideas of their own. With appro-
priate help from the teacher, the best and easiest way to do
this is to use a photogate to count the rotation rate of a free
rear wheel. In this way, the students will be able to measure
both the instantaneous velocity and the distance travelled.
This can be done by just using the materials in the Arduino 4
wheel chassis kit, or developed separately if the teacher pre-
fers to do so.

Some maths will be required here to transform the number of
blocking events counted by the photogate into speed or dis-
tance. The kit includes a disc with 22 holes in it and a wheel
with a diameter of 5.1±0.1 cm. It is not difficult to calculate
that 1 pulse from the photogate, which means a wheel rotated
1/22 of a full rotation, corresponds to a distance of d = 0.72 cm.
At the same time, the photogate measures and sends a time
interval t in milliseconds between consecutive pulses. Instan-
taneous speed can be calculated by dividing 0.72 cm by this
time interval.

The following steps can be used, irrespective of whether the
students are working in different groups or only in one. A
 single group would work through all the steps one after the
other, while different groups would split the three tasks.

<Arduino programming>
The Arduino programming group will work on the coding using
the following approach:
1. Define the actions and consequently the methods or func-

tions to collect and send the required data via Bluetooth.
2. Write and test each method separately.
3. Put everything together.

Beginners could start with TinkerCad[6], which allows online
Arduino circuit design and simulation, thus preventing burn-
outs and short circuit problems at the prototyping stage.

The following sections outline each part in more detail:
1. The required actions are: starting and stopping a motor,

applying and releasing brakes, measuring the distance,
measuring the speed, sending and receiving the data via
Bluetooth.

2. The crucial part here is to write a code to measure the speed
and distance travelled during the same experiment. Both
of them use pulses from a photogate and are activated
when ‘2’ is received from the phone app via Bluetooth:

 ↪ To measure the distance, there is a counter which starts
counting pulses sent to the Arduino from a freely rotating
rear wheel after the brakes are applied to the front wheels.

 ↪ The time intervals between pulses are used to measure
the instantaneous speed. A rear wheel turns 0.72 cm
during one pulse, so this needs to be divided by the
time interval between pulses.

 ↪ The functionality of an anti-lock braking system (ABS)
could be implemented by applying the brakes and re-
leasing them once for a variety of time intervals bet ween
50 and 200 ms (optimised experimentally), which in
most cases leads to a shorter stopping distance.

3. When you put together a program for Arduino, you need to
ensure that everything happens in one big loop. Therefore,
if the program is interrupted at any particular step, it will
affect all the following steps.

The sample code and references to other sources for each of
these functionalities are available online[7] but, with a little
help from their teachers, the students should be encouraged
to try and write their own code.

 e 1: A complete chassis kit

Fundamental Science in 1’s and 0’s: Science Friction<32>

<Android programming>
The Android programming group can explore AppInventor[3] and
think of ways to display the data on the screen (user inter face,
UI). The students will decide where and how to arrange the
buttons to control the car as well as the panels and labels to
display the data on a screen (e2). The code of the AppInventor
program is provided online[7] and has the following functiona-
lities:

1. Pushing the STarT button sends ’1‘ to the Arduino[1] via
Bluetooth and starts the motor in the car.

2. Pushing the STOP button sends ’2‘ to the Arduino via Blue-
tooth, which stops the motor and then applies the brakes.

3. Pushing the aBS button sends ’3‘ to the Arduino via Blue-
tooth, which stops the motor and then applies the brakes
at regular intervals (simulating an ABS feature).

4. After pushing the STOP button or the aBS button, the data
received about the instantaneous speed before stopping
and the distance that the car has travelled after applying
the brakes, i.e. the stopping distance, will be displayed in
two corresponding panels with the ’speed‘ and ’distance‘
labels respectively.

5. The rESET button sends ’0‘ to the Arduino via Bluetooth, clears
the speed and distance data, and then resets the Arduino.

We recommend that you use the provided code as a reference
for teachers and give the students the opportunity to explore
AppInventor[3] and write their own code based on the above
functionalities.

<Car building>
The car building group will be asked to think of appropriate lo-
cations and ways to attach components like the motor, photo-
gate, servo, batteries, Bluetooth module, motor shield and, fi-
nally, the Arduino board itself. When the servo turns, it is
important that it pushes a handle with a rubber tube firmly to
the rotating disk, which is mounted on the front wheel axis
(e3).

It can provide enough force to stop the wheels immediately.
The position of the photogate is equally important. Please en-
sure that it counts all the pulses correctly – the recommend-
ed photogate Arduino sensor has a built-in LED, which blinks
when something enters the photogate gap. For this reason,
please make sure that the photogate counts the rotations cor-
rectly when the rear wheels rotate (e4).

Also, please ensure that the rear wheels rotate as freely as
possible at all times. Remember that we calculate speed and
distance using the free rotation of the rear wheels. Finally, the
car should look similar to the example depicted in e5 once it
has been built. e 2: User interface of the app

 e 3: A close-up of the brake system

 e 4: The photogate

<33>Fundamental Science in 1’s and 0’s: Science Friction

We recommend that you keep detailed guidelines as a refer-
ence and give students the opportunity to brainstorm and im-
plement their own solutions.

<Conclusion>
This project is a fun way for students to learn core physics con-
cepts like force of kinetic and static friction, and, at the same
time, relatively modern technology like ABS, where physics,
electronics, programming and design come together to explore
factors affecting the stopping distance of a car. It is always a
challenge to interpret and analyse real experimental data. It
involves key concepts such as uncertainty, validity, repro-
ducibility and visualisation. The project allows the students to
experience and understand force of friction in a hands-on,
thought-provoking lesson.

<Cooperation activity>
This project offers great potential for collaboration, since its
three independent elements – the design of the car, the cod-
ing of the Arduino[1] and the coding with AppInventor[3] – could
be further developed and improved. All the cooperating part-
ners would benefit from each other’s contribution to any of
these components.

Another option for cooperation could be a competition be -
tween school teams based on who could make a car with the
same wheels and the same mass stop more quickly, provided
that the ’road‘ surface and speed before stopping are the same.

Many thanks to our Greek colleagues: Astrinos Tsoutsoudakis
for providing important suggestions about the physics in-
volved in this project and Georgios Georgoulakis for his ex-
tremely useful coding tips. We would also like to acknowledge
the comprehensive feedback and support of Jörg Gutschank,
which made this project more interesting and reproducible.

<References>
[1] www.arduino.cc
[2] www.arduino.cc/en/Guide/Environment
[3] http://appinventor.mit.edu
[4] http://snap4arduino.rocks/
[5] https://developers.google.com/blockly/
[6] www.tinkercad.com/circuits
[7] All additional materials are available at

www.science-on-stage.de/coding-materials.

 e 5: The assembled car

Fundamental Science in 1’s and 0’s: Science Friction<34>

http://www.arduino.cc
http://www.arduino.cc/en/Guide/Environment
http://appinventor.mit.edu
http://snap4arduino.rocks/
https://developers.google.com/blockly/
http://www.tinkercad.com/circuits
http://www.science-on-stage.de/coding-materials

<35>Fundamental Science in 1’s and 0’s: Science Friction

<Author> Georgios Georgoulakis

<Author> Astrinos Tsoutsoudakis

Rolling
Sounds

<Keywords> fundamental science, data acquisition,
 circular motion, sound waves, geometry, trigonometry

<Disciplines> physics, mathematics, computer science

<Age level of the students> 14–17

<Hardware> Arduino microcontroller[1] or similar (with the
appropriate drivers installed), microphone, high output
buzzer, power drill with its base, materials for wooden
disk setup

<Language> Snap4Arduino[2]

<Programming level> medium

<Summary>
This interdisciplinary educational scenario combines physics
with computer science. It can either be used in a computer
 science class or in a physics class and it involves—along with
the calculation of other physical quantities of uniform circular
motion—the calculation of the linear velocity of rotation in two
different methods.

The first of these methods detects how often the signal of an
infrared proximity sensor is blocked by a small metal strip
that is attached to a particular point of a rotating disc, thus
measuring the period. The second method exploits the Doppler
shift of a sound-emitting source placed on top of the disc.

<Conceptual introduction>
The experimental study of the physical quantities (period T,
frequency f, linear velocity v and angular velocity ω) of uni-
form circular motion is based on the knowledge acquired in
Greek senior secondary schools (students’ age: 14–17) and in
the curricula of other European secondary schools. This also
involves learning about the Doppler effect. The frequency and
the magnitudes of angular and linear velocity are obtained by
using well-known formulas:

f =
1
T

, ω =
2π

T
 and v =

2πr
T

T is derived from the microprocessor’s internal clock, i.e. the
time between signal detections, and radius r stands for the
distance between the metal strip, or the buzzer, and the
 centre of the disc.

<Doppler effect experiment>
The Doppler effect is the change in frequency or wavelength of
a wave if the source moves relatively to an observer. A com-
mon day-to-day example of this phenomenon is the change in
pitch of a siren on a moving ambulance. When the ambulance
approaches, the sound heard is higher than the original one;
however, when the ambulance moves away, it is lower. The
 received sound is only the same at the moment when the am-
bulance passes the observer.

We use a buzzer on a rotating disc as the source and a static
microphone as the observer in our experiment (see e1).

As the disc rotates counter-clockwise (e1), the component
of the velocity on the line of the chord, joining point B0 with the
point where the buzzer B is located every time, increases from
zero to maximum at point B1 and subsequently decreases to
zero at point B2. That velocity component is the actual reced-
ing velocity for the Doppler effect. From point B2 to B3, the
 velocity component, which now stands for the approaching
 velocity, increases from zero to maximum at point B3 and then
decreases again to zero at point B0.

Calculate the linear velocity by applying the Doppler shift for-
mula for a moving source at point B3 and an observer at rest.
The linear velocity remains constantly perpendicular to the
 radius of the circle and the angle of π

4 is determined by the
geometrical properties of the formed right-angle and isosceles
triangle B3OB0.

<Info>

B0 v

v
v

v

vD

vD

vD

α

α

Θ

0

B2

B3 B1

v

α

π/4

π/4

Microphone

 e 1: The schematic of the experiment

<37>Fundamental Science in 1’s and 0’s: Rolling Sounds

f = f0∙(
vs

vs–vD
) ⇒ f =

f0·vs

vs–vD
 ⇒ f·vs – f·vD = f0·vs  

⇒ f·vD = (f – f0)·vs ⇒ v·cos(π
4) = (

f – f0

f)vs

⇒ v = (
f – f0

f) vs

cos(π
4)

f: measured frequency
f0: emitted frequency
v: velocity
vs: velocity of sound
vD: receding/approaching velocity

As the implementation of a Fast Fourier Transform to extract
the frequency content of the produced sound is well beyond
the students' coding capabilities, free audio editing software
like Audacity[3] will provide an adequate text file with all the
necessary data.

<Further materials>
One more method that utilises a pitot-static tube system and
a differential pressure sensor has been deliberately left out of
the scope of this teaching unit to simplify matters, but all the
required information is available online[4]. The online material
offers a detailed description of the experimental setup, alter-
native construction ideas, along with theoretical documen-
tation and step-by-step analysis of the procedures used.

<What the students/teachers do>
In the physics-related section of the teaching unit, the students
will measure the physical quantities of circular motion at differ-
ent radii and explore the Doppler effect. However, they will first
design and assemble a basic experimental setup beforehand.

<The wooden disc setup>
The students will build the setup consisting of a wooden disc
which is driven by a power drill and bears a buzzer connected
to a 9V battery. An independent but closely situated infrared
proximity sensor feeds the microcontroller a signal for every
complete rotation, while a cheap microphone records the
sound that is produced. The Doppler shift should ideally be au-
dible for the chosen rotational speed, which should be kept
low for safety reasons. (e2 & 3)

Case for
9V battery

Buzzer

 e 3: Disc viewed from above

 e 2: Basic experimental setup

Fundamental Science in 1’s and 0’s: Rolling Sounds<38>

An attractive and student-friendly interface has been developed
as shown in e4 to input all the required parameters and ex-
tract the calculated values.

The students need basic programming skills and some experi-
ence using block programming languages (such as Scratch or
Snap!). We give the students a basic template to work their
code to ensure that they focus on the teaching unit objectives
and not on the user interface and the appearance of the program.

Therefore, we provide the basic template in a Snap![5] project
.xml file and a work assignment paper to give the students
 basic instructions about the template form and outline what
we expect from them. Both the template and the assignments
are available online.[4]

The students will check and validate the acquired data, connect
and communicate with the external devices, receive and process
data from the sensors and write a simple serial search algorithm.

The finished program is also available for the teacher for down-
load as a reference file[4]. e5 contains an example screen-
shot of the Snap4Arduino[2] programming environment. e6
contains the corresponding Nassi-Shneiderman diagram.

As mentioned before, we recommend using a free audio edit-
ing software like Audacity[3] to extract the frequency content
of the produced sound. The software provides an adequate
text file with all the necessary data for the students to learn
how to process a sound signal by means of a specialised soft-
ware.

The signal import and essential processing is illustrated in
e7–9, while e10 depicts a part of the final data export. To
avoid in-depth analysis and to allow for a better comprehension
from the students, a rough assumption has to be made here. The
yellow highlighted frequency, which possesses the maximum
level, is the buzzer’s frequency at rest or the one measured at
points B0 and B2, while blue and green represent those between
our primary frequency shifts as the nearest peaks (e10).

However, the proposed code searches only for the green high-
lighted, but for better accuracy it can be easily modified to find
both. To speed things up, the data section could also be nar-
rowed to only 50–100 values above and below the frequency
of the maximum level.

 e 4: The experiment’s interface

 e 5: The calculation of the rotational period

 e 6: Nassi-Shneiderman diagram for period

 e 7: A recorded sound waveform

<39>Fundamental Science in 1’s and 0’s: Rolling Sounds

The sound spectrum data processing is shown in e11 & 12.
Detailed information, e.g. about the used variables, is available
online. [4]

 e 8: A spectrogram showing the Doppler shift

 e 9: Frequency analysis by Fast Fourier Transform

Frequency(Hz) Level (dB)

3273.046875 -27.597595

3275.738525 -22.331339

3278.430176 -12.437067

3281.121826 -7.5547090

3283.813477 -10.041918

3286.505127 -9.7750780

3289.196777 -16.848948

3291.888428 -26.916197

 e 10: Exported data

 e 11: The Doppler shift part of the experiment[4]

 e 12: Nassi-Shneiderman diagram for sound data processing

Fundamental Science in 1’s and 0’s: Rolling Sounds<40>

<Algorithm to use in other languages>
The basic template will allow easy transfer to any other pro-
gramming language as long as there is a basic library for com-
munication with the microcontroller. Hence, the choice of
 microcontroller will have no significant effect on the project.

<Conclusion>
This is a low-cost project which is easy to assemble and operate;
it will hopefully be interesting and stimulating for the students.

<Cooperation activity>
The Science on Stage platform is all about exchanging teaching
ideas and implementing innovative educational approaches.
Co-teaching with Ilia Mestvirishvili and David Shapakidze, a
 superb partner team from Georgia, might prove to be challeng-
ing due to the distance and scheduling issues, but it has already
allowed us to develop new techniques. Despite the common
lack of a background in special needs education, it would be a
good idea to modify the project to make it accessible to all
 students.

<References>
[1] www.arduino.cc
[2] http://snap4arduino.rocks
[3] www.audacityteam.org
[4] All additional materials are available at

www.science-on-stage.de/coding-materials.
[5] https://snap.berkeley.edu

 ↪www.physicsclassroom.com/mmedia/circmot/ucm.cfm
 ↪https://education.pasco.com/epub/PhysicsNGSS/
BookInd-904.html
 ↪http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/dopp.html
 ↪http://newton.phys.uaic.ro/data/pdf/Doppler_experiment.pdf
 ↪https://manual.audacityteam.org/man/tutorials.html

(all December 2018)

<41>Fundamental Science in 1’s and 0’s: Rolling Sounds

http://www.arduino.cc
http://snap4arduino.rocks
https://www.audacityteam.org
http://www.science-on-stage.de/coding-materials
https://snap.berkeley.edu
http://www.physicsclassroom.com/mmedia/circmot/ucm.cfm
https://education.pasco.com/epub/PhysicsNGSS/BookInd-904.html
https://education.pasco.com/epub/PhysicsNGSS/BookInd-904.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/dopp.html
http://newton.phys.uaic.ro/data/pdf/Doppler_experiment.pdf
https://manual.audacityteam.org/man/tutorials.html

<Author> Mihaela Irina Giurgea

<Author> Corina Lavinia Toma

Physics
Engine

<Keywords> animation, sprite, blocks, loops, graphs,
 gravitational laws, collisions, free fall, friction force,
oblique throwing, motion, momentum, operators,
 variables

<Disciplines> computer science, physics, mathematics,
ICT

<Age level of the students> 14–16

<Hardware> computer

<Language> Scratch[1]

<Programming level> easy, medium

<Summary>
What would you think if we told you that your students could
learn two seemingly very different subjects, physics and com-
puter science, more easily and also at the same time? In this
unit, the ‘engine’, i.e. the Scratch[1] programming environment,
is the magic tool that will help students to create interesting
applications about everyday natural phenomena to better un-
derstand the laws of physics and improve their programming
skills in the process.

<Conceptual introduction>
Why did we use Scratch[1]? Scratch is a visual programming
environment that animates sprites using blocks on the com-
puter screen and helps students to create applications more
easily than with classical programming environments (C++,
Java, etc.). In addition, our ‘engine’ helps us to teach two sub-
jects that students consider difficult: physics and computer
science. By removing the main obstacles, the impossibility to
imagine (see) how a phenomenon actually works and the
complicated syntax of coding, we have created an enjoyable
new way of teaching.

The students who were involved in the development of this
teaching unit already had some coding experience, so they
were able to work out how to use Scratch. They use it in their
regular as well as in their optional computer science lessons.
Besides this, the physics knowledge required is part of the
standard curriculum, and it is always useful to revise and
 apply what you have learned.

<What the students/teachers do>
The unit is all about alternating sequences of learning involv-
ing coding and physics.

First, the computer science teacher presented the basics for
making a project in Scratch[1]. The students familiarised them-

selves with several key words related to the Scratch environ-
ment: stage, sprites, costumes and movement. You can follow
the instructions and explanations for the first application
taught in Scratch, an application without physics formulas.[2]

The students needed to understand the interactions between
the sprites and their synchronisation as well as how a coordi-
nate system works. You can find a complete tutorial for Scratch
online.[3]

To better understand the main algorithms in Scratch, the stu-
dents looked at exciting and interesting apps. When they saw
the code behind these, they were sometimes surprised to dis-
cover that they could create such apps themselves.

For the physics part of this unit, the students applied the
 theoretical principles behind the phenomena of the world
around them. For this reason, the physics teacher suggested
a wide variety of topics[4], which the students then discussed:
formulas needed, possible animation, the design, etc.

The students chose from those topics. A week later, we re-
ceived apps on the oblique throw of a ball, the free fall of an
apple, the more complex fall of a water drop or the collision
 between two balls, but also the movement of planets in the
Solar System or even small games.

At first, the students worked individually with some help from
their teachers. When the projects needed improvement, the
students were guided by the teachers and their classmates.
(e1)

 e 1: Individual work

Then, everyone presented their project to the class and re-
ceived feedback from their peers. This made it easier for the
students to work out which parts of the projects needed to be
improved: the coding or the physics.

At the end of our project, the older students became teachers
for the younger students (12–13 years old) by presenting

<Info>

<43>Fundamental Science in 1’s and 0’s: Physics Engine

suitable applications and testing them during physics lessons.
They enjoyed the responsibility and were very proud of their
work. The older students also received suggestions from the
younger students. The best of these student simulations are
available on the Scratch platform.[2]

The following sections contain examples of how we ap-
proached the physics and the programming parts.

<Application 1: Free fall problem
(Newton’s apple)>
Every student has heard of the free fall of this historical object:
Newton’s apple.

The application in e2 is inspired by a classical problem: what
is the distance travelled every second by Newton’s apple in
free fall?

Physics theory

We consider a linear motion with constant gravitational accel-
eration g = 9.8

m
s² .

After a time t, the travelled distance h(t) of the apple is:
h(t) = gt²

2
 .

The initial point h(0) is fixed on the tree branch from which the
apple detached itself.

Then we calculate the travelled distance during a longer period,

t + ∆t: h(t + ∆t) = g(t+ ∆t)2

2
 .

The general formula for the distance ∆h(t) , the distance trav-
elled by the apple during ∆t, is:

∆h(t) = h(t+∆t)– h(t) = g(2t∆t + ∆t²)
2

 .

Then we use the data of the specific problem to customise the
general formula; in this case, 1s for ∆t. For the first second,
t = tin = 0 results in ∆h₁ = 4.9 m, for the next second, t=1s
 results in ∆h₂ = 3∙4.9 m = 14.7 m and so on. Through mathe-
matical induction, we can calculate the distance travelled dur-
ing the nth second considering t = (n–1) s:

∆hn = 9.8(2n–1)
2

 m.

Then the students can calculate, and also see in our animation,
that the travelled distance increases by the same amount
every second, 9.8 m.

How do we code this?

Variables used:
g: gravitational acceleration
t: a counter for seconds (with values: 0, 1, 2, 3, 4, 5)

 e 2: Free fall problem

Fundamental Science in 1’s and 0’s: Physics Engine<44>

h: the travelled distance after t seconds
h_in: the initial position of the apple
delta_h: a list (array) with all distances travelled in every second
y: the y-coordinate of the apple
Observation: in this app, the x-coordinate remains constant = 0,
so you can move the trajectory more easily to the left or the
right on the stage.

At the beginning, the apple is at the point with the coordinates
(0,180). The initial point and the direction for the travelled dis-
tance h(t) are marked in e3.

Using a loop 5 times, we recalculated the distance that the
 apple travelled after every second, working out the new
 y-coordinate and considering the screen’s characteristics. See
e4 for the encoding algorithm.

Challenge

The students modify ∆t and the travelled time t (our apple
tree should be very tall—it is probably better to draw a tower

building) or move the problem to another planet with its own
gravitational acceleration. To create a complex project, they
could add the friction force from the air and consider a variable
gravitational acceleration by dropping the apple from a weather
balloon at a higher altitude.

<Application 2: Falling water drop>
On a rainy day, everyone can observe the fall of water drops.
The students analysed the linear movement of one drop with
our simulation. At the beginning, they saw that the fall of the
water drop is accelerated, but with decreasing acceleration.
 After some time, the drop’s velocity reached its limit, the termi-
nal velocity vt, when the acceleration reached zero. Then the
water drop continued to move at this constant velocity. How
can you explain this?

Physics theory

In the accelerated part of the movement, two forces act in op-
posite directions on the drop: the gravitational force G = mg
(m: mass of the drop, g: gravitational acceleration) and the
friction force Ff = kv (k: constant of proportionality, v: instan-
taneous velocity). The acceleration of the drop becomes:
a = g – k

m
 v.

In our simulation, we consider a large drop that measures
about 5 mm in diameter with the terminal velocity vt = 9.8 m

s
.[5]

In this case, the constant k
m

 = 1
s

. The acceleration decreases
when the velocity increases (see e5). The initial values are
a = 9.8 m

s²
 , v = 0 and y = 0.

We use a small program in C++[4] to calculate the instanta-
neous acceleration and velocity, where we consider the accel-
eration and the velocity constant for very small time intervals
∆t (like 0.05 s). In this case, the velocity increases with
∆v = a∆t and the travelled distance with ∆y = v∆t for each
chosen ∆t (step-by-step method).

(x:0, y:180)

(x:240, y:0)(x:–240, y:0)

(x:0, y:–180)

h

 e 3: Orientation in the coordinate system

 e 4: Free fall problem
–30

–25

–20

–15

–10

–5

0
0.5 1 1.5 2 2.5 3 3.5 4

y(t) [m] v(t) [] a(t) []

t[s]

m
s

m
s2

 e 5: Relation between travelled distance, velocity and
acceleration

<45>Fundamental Science in 1’s and 0’s: Physics Engine

How do we code this?

1. Paint a water drop sprite.
2. Paint a horizontal green line at the bottom of the backdrop.
3. Make a sprite with the message ‘acceleration=0’, which

appears when the acceleration has a value of about 0.
4. Write the code for the drop sprite. The drop starts at the

point (0, yinit). Using a loop, we recalculate a(t), v(t), y(t).
We use the distance reached by the drop after every ∆t,
working out the new y-coordinate and taking into account
the screen’s characteristics. The acceleration decreases
and when it is about 0, the loop is finished. At this point,
the sprite message is shown on the screen. Next, the drop
sprite falls at a constant velocity until it touches the green
line of the backdrop.

e6 provides a clear explanation of the code.

Challenge

The students can improve this application if they add a vari-
able for the water drop mass (the water drop diameter can
usually take on values from 1 mm to 5 mm)[6] and another
type of friction force: Ff = kv²

2
.

The students could also add more drops of different masses
and compare how they fall.

<Application 3: Elastic collision>
There are many examples of bodies colliding around us. These
collisions are complicated, but we consider the elastic colli-
sions with applicability in real life for billiard or steel balls, or in

theory for collisions of molecules when the students study the
ideal gas model.

Physics theory

The linear momentum and the kinetic energy are conserved
for two balls with the mass m1 and m2, the initial velocities
(v1
→) and (v2

→) and the final velocities (v1f
→)and (v2f

→). [e7]

m1v1
→ + m2 v2

→ = m1v1f
→ + m2 v2f

→   and

 1
2

 m1v2
1 + 1

2
 m2v2

2 = 1
2

 m1 v2
1f + 1

2
 m2 v2

2f

If all motion takes place along the same line (movement on
x-axis), we can use + or – signs to designate directions. Vector
notation is not needed for the straight-line collision case, and
the final velocities can be calculated with the following equations:

v1f = 2 m1v1+m2v2

m1+m2
 – v1 and v2f = 2 m1v1+m2v2

m1+m2
 – v2 .

How do we code this?

1. Choose two sprites for the balls (Ball1 and Ball2) and one
sprite for the STarT button (Start sprite).

2. Use variables: mass1, mass2, velocity1, velocity2 (the
mass and the initial velocity) for each object. Make the
variable sliders visible and set the minimum and maximum
value for them.

3. Enter the mass and the initial velocities for each object.
4. Press the STarT button. At this time, the sprite broadcasts

a message for the ball sprites. When they receive the
 message, each ball moves towards the other using the
well-known formula distance = speed × time.

5. Calculate the final velocities of the balls and use them to
move the balls in the right direction until a ball either
touches the edge and leaves the scene or stays in its
place because its new velocity is 0.

e8 and 9 provide a clear overview of how the two balls are
animated in Scratch[1].

 e 6: Falling drop

mass1, velocity1

mass1, final velocity1

collision

mass2, final velocity2

mass2, velocity2

 e 7: Elastic collision

Fundamental Science in 1’s and 0’s: Physics Engine<46>

Two examples of using this application:

1. Choose one velocity 0 and equal mass for the balls; after
this collision, you will observe that the moving ball stops
and the other one moves with the same velocity that the
first ball had before the impact.

2. The balls have different velocities and equal mass; after
the collision, you will see that the objects take each other’s
value for the velocity.

In both examples, the balls interchange their momentum.

Challenge

The students could change the size of the balls directly propor-
tional to their mass; they could make an application for a
two-dimensional elastic collision (simulation for the Compton
effect) or they could program a simulation for the collision of
a ball with a wall (reflection law in mechanics).

You could continue the study with another application, i.e. an
inelastic collision.[4]

<Conclusion>
<For the students>
Advantages

The students learned physics theory in a more enjoyable way
and were able to understand the natural phenomena better
using simulations in Scratch. They deepened their computer
science and physics knowledge at the same time. Even though
their projects were not all perfect, the students clearly im-
proved their coding and algorithmic thinking skills as a result.

Disadvantages

The students worked alone and more at home. They received
feedback at school.

<For the teachers>
Advantages

We observed a real interest in creating an original application
and learning more than in classical lessons.

Disadvantages

It was difficult for us to coordinate the whole class because of
the wide variety of physics topics and the very specific bugs
in each application. We think that it would be better to give all
the students the same topic and to encourage them to im-
prove it to the best of their varying levels of ability.

<Cooperation activity>
Students from different schools and countries could solve the
challenges of the projects and create new ones with other
 ideas related to the original topic. All these applications could
be put in the same place on the Scratch platform, and then a
contest could be organised to determine the best of them.
Teachers also need to take into account the complexity of the
coding and the physics when they evaluate their students’ work.

<References>
[1] https://scratch.mit.edu/
[2] All additional materials are available at

www.science-on-stage.de/coding-materials.
[3] https://en.scratch-wiki.info/
[4] https://scratch.mit.edu/users/SonS_Coding
[5] http://hypertextbook.com/facts/2007/EvanKaplan.shtml

(29/11/2018)
[6] https://journals.ametsoc.org/doi/pdf/10.1175/1520-045

0%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2
(29/11/2018)

 e 8: Elastic collision for Ball1

 e 9: Elastic collision for Ball2

<47>Fundamental Science in 1’s and 0’s: Physics Engine

https://scratch.mit.edu/
http://www.science-on-stage.de/coding-materials
https://en.scratch-wiki.info/
https://scratch.mit.edu/users/SonS_Coding
http://hypertextbook.com/facts/2007/EvanKaplan.shtml
http://hypertextbook.com/facts/2007/EvanKaplan.shtml
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2

<Author> Luc Ivarra

<Author> Marco Nicolini

SMB—Science
Magic Box

<Keywords> microcontroller, transducer, sensor, actuator,
signal, physical quantity, loop, branch, sequential,
 process, calibration, input, output, read, write, analogue,
digital, linearity, conversion, breadboard, pin, soldering,
human machine interface

<Disciplines> physics, electronics, mathematics, ICT,
logic, biology

<Age level of the students> 14–18

<Hardware> Arduino UNO[1] with Arduino DUE[2] and/or
TI-Nspire CX CAS with TI-Innovator Hub

<Language> C++ (using Arduino IDE[3]) and/or TI-Basic

<Programming level> medium, with an audio section for
advanced students

A list of the abbreviations, special terms and acronyms
used in this unit is available online.[4]

<Summary>
The students will learn how to program for a self-built hard-
ware-software environment (based on Arduino) and for a
ready-to-use pocket computer (TI-Nspire CX CAS calculator
with its extension, the TI-Innovator Hub). Both are used as de-
vices for sensor data collection, conversion and transduction
to easily handle, read, convert and actuate physical quantities.

Using the Arduino platform, the students will code in a frame-
work of sensors that acquire physical quantities as input
 signals, and actuators that react to the acquisition and
 produce an output signal as a physical quantity after a micro-
controller has processed the detected signal to set the proper
output (see e1).

The TI-Innovator Hub is a ‘ready to use‘ box that enables stu-
dents to learn the basics of programming. It must be plugged
into a TI-Nspire CX CAS calculator. It has a good I/O interface,

which includes a luminosity sensor, two LEDs and an on-board
buzzer, which produces a sound of a given frequency (see e2).

<Conceptual introduction>
The unit introduces students to the coding world for physical
problems, based on detecting and measuring physical quanti-
ties, processing the data, reacting and deciding to perform an
action with actuators.

The code is normally based on an infinite loop (the machine is
usually ‘alive’ as long as it is powered, and it must work all the
time), where the three actions of measuring, processing and
acting are performed in this order.

The students will learn that they can write any code with
1. sequential instructions
2. loops (while … do; repeat … until)
3. branches (if…then…else)
as stated in the Böhm-Jacopini theorem (see ‘Additional infor-
mation’[4]).

The second goal of the unit is to introduce the students to mi-
crocontrollers. They will learn to set up input sensors and out-
put actuators, using digital or analogue ports, and how to write
a simple program that reads input, processes data and writes
output. They can choose to output either sound or light sig-
nals. These can be interpreted as ‘alarms’ which issue a warn-
ing based on the input read by the sensors.

<Info>

 e 1: Arduino board

 e 2: TI-Nspire and TI-Innovator Hub

<49>Fundamental Science in 1’s and 0’s: SMB—Science Magic Box

The students will use the Arduino[1] integrated development
environment (Arduino IDE[3]) to program in C++, with ready-
to-use function libraries that make the coding process easier
and faster.

A breadboard (see ‘Additional information’[4]) must be available
to allow the students to prototype and easily connect sensor
pins to the Arduino I/Os, 5V power supply and GND pin.

The structure of any program, in metalanguage, is shown in e3.

Please note that the meta instruction ‘While (TRUE)’ is a trick
to tell any processor to repeat the included instructions inde-
finitely (as long as the microcontroller is powered).

The third main goal is to learn how to convert an acquired
physical quantity into another quantity (e.g. light intensity
into sound), ready for transmission to the external environ-
ment, by following these steps:
1. The physical signal (light, sound, force, energy …) is

 acquired by the sensor and converted into an electrical
signal.

2. The electrical signal is transformed into a number avail-
able to the processor.

3. The number is processed and transformed by the proces-
sor into another number, and then used to do an action
with an actuator transducer.

4. The actuators convert the number into electrical signals
that are ready to be output.

5. The electrical signal is finally transformed into a physical
signal (e.g. sound, light).

In 1 and 5, the signals must be converted from one form into
another. In these phases, the linearity of the transformation,
or the ‘close to linearity’ dependence, is extremely important
(see ‘Additional information’[4]).

See ’Additional information’[4] for a detailed explanation of the
last line of the metacoding (‘Blink on-board LED’).

The input signal is usually called a ‘stimulus’ and comes from
the environment where the sensors are placed to get data. The
processor and the code are designed to ‘react’ to the stimulus
with mathematical/logical operations (performed by the code
instructions, processed by the microcontroller) and to output
this ‘response’ to the environment. In our activities, the envi-
ronment is the space surrounding the Arduino, which is able to
‘see’, ‘hear’ and ‘feel forces’ thanks to the sensors.

Working with the TI-Innovator Hub allows the students to focus
more on the coding part of their work, as the microcontrollers
and sensors are already set up and ready to use.

<What the students/teachers do>
We recommend that you begin by brainstorming to collect all
your students’ naïve ideas about sensors and automatic
 machine control. Collecting these ideas, gaining practical ex-
perience with the sensors and automatic machine control and
then comparing the results with their previous (maybe incor-
rect) ideas is a good way to help the students to truly under-
stand the process.

You could prepare a form with questions like:
 ↪Do you know how a thermostat controls the temperature in
a room?
 ↪What is a sound warning-based parking system for? How
does the driver react when the sound is emitted by the
system?
 ↪Do you have an induction hob in your kitchen? What does
an illuminated LED mean?

See ‘PEC and list of questions’[4] for an example of a complete
question list and references to the PEC (Prevision, Experience,
and Correction) teaching methodology.

Start

Set up
sensors

Read data from
external sensors

Write data to output
on actuators

Process data
Data elaboration

Assign data
to output

Blink on-board LED to
show that Arduino is alive

<neverending
loop>

 e 3: Flow chart

Fundamental Science in 1’s and 0’s: SMB—Science Magic Box<50>

<Theoretical phase with Arduino[1]>
The teacher will introduce C++ programming[3] with the
 struct ure and basic instructions so that the students can
write a simple loop using the instructions analogRead,
digitalRead, analogWrite, digitalWrite, if…then…else, loop,
while.

Hardware part

The teacher will present the microcontroller layout, showing
the microprocessor, the analogue I/O pins (connections) and
the digital input/output pins (connections).

The students will learn that any sensor/actuator usually has
multiple connections:

 ↪to the 5V or 3.3V Arduino output to get the power supply
 ↪to the GND (ground) signal so that a current can flow

and
 ↪to another digital or analogue input pin if it is used to read
(get) external data

or
 ↪to another digital or analogue output pin if it is used to take
actions that generate an output, e.g. emit a sound or light, or
do anything else that signals a situation (a ‘write’ operation)

Software part

The teacher will present a simple program that reads a sensor
and writes an actuator, where a clear association between the
physical pins and physical address on-board the micro-
controller can easily be established by students.

An example of ready-to-use instructions is available online
(‘Program example 1’[4]).

The students must keep in mind that the processor executes the
code instructions one after the other and in the order in which
they are written. Only the ‘loop’ instruction alters this principle
as it tells the processor to continuously repeat the bracketed
instructions as long as the microcontroller is powered.

<Practical phase with Arduino>
The students will get hands-on experience with the microcon-
troller, the breadboard and the sensors. The teacher should
present the structure of the breadboard, showing all the avail-
able connections and how the students can take 5V, GND and
I/O signals from the Arduino[1] to the breadboard. The students
will be invited to copy the given coding example and to try,
test and debug the code with the connected I/Os.

Hardware part

The students need the microcontroller, the sensors and short
cables (10 cm) to allow easy connections between the sensor
pins and the breadboard ‘holes’. Sometimes you might need to
solder additional cables to the sensors, but many sensors do
not require this.

 e 4: Arduino, breadboard and sensors

 e 5: Breadboard detail

 e 6: Breadboard with LEDs

<51>Fundamental Science in 1’s and 0’s: SMB—Science Magic Box

The students will use the short cables to connect the 5V power
supply and the GND signal to the breadboard, and the ana-
logue/digital pins of the Arduino[1] to some ‘holes’ on the
breadboard. This will allow the sensors to be easily lodged on
the breadboard, and receive the required electrical signals
(see e6).

Software part

After checking that the microcontroller-to-breadboard connec-
tions have been properly settled, with the exact correspondence
between the pin logical number on the microcontroller and the
sensor pin on the breadboard, the students will try to write the
simple code provided (‘Program example 1’[4]).

Algorithms with Arduino

We have prepared several signal conversions from one physi-
cal form to another.

Conversion of an analogue light signal into a digital light signal
in an LED (modulated with a PWM feature) and a sound: the
emitted sound frequency increases with the intensity of the
light. Practical application: alarm clock, assistance for blind
people. (See e7)

Conversion of a force detected through a force sensor into a
digital light signal in an LED (modulated with a PWM feature)
and a sound: the light intensity increases with the intensity of
the force. Practical application: weight load alarm. (See e8)

Conversion of an external noise signal into a digital light signal
in an LED. The higher the sound, the higher the light frequency
will be. Practical application: noise pollution control.

Conversion of a distance measured with a distance sensor into
a sound. Technical application: car parking sensors. (See e9)

Conversion of a temperature signal into a sound and a light
signal. Technical application: oven temperature control.

Conversion of soil moisture concentration into a light signal.
Technical application: plant irrigation and watering alarms and
control. (See e10)

See ‘Program example 2’[4] for the code used for these applica-
tions on the Arduino board.

All these algorithms serve as signal control and warning sys-
tems which monitor a selected environment on a physical
quantity and issue a warning based on the input (stimulus) read.

<Theoretical phase with the TI-Innovator Hub>
Hardware part

The teacher can show the students how easy it is to connect
the sensors.

 e 7: A light sensor

 e 8: A digital buzzer

 e 9: A distance sensor

 e 10: A soil moisture sensor

Fundamental Science in 1’s and 0’s: SMB—Science Magic Box<52>

Software part

The basic programming can be done on the calculator alone;
the students only need to master the TI-Basic instructions
 provided above. Then the hub can be connected and the stu-
dents will learn how to communicate with it, i.e. to use the in-
structions ‘read’ and ‘get’ to acquire data and ‘set’ to control
the outputs.

<Practical phase with the TI-Innovator Hub>
Hardware and software part

The students will start with basic examples to familiarise them-
selves with the hub before working on more open problems. The
students will learn how to control the different outputs with
small exercises, e.g. controlling the colour of the LED, making
it blink, controlling the duration of the blinking and producing
sounds of a given frequency. The infinite loop will again be the
basic structure to continue the operations indefinitely.

Algorithms with the TI-Innovator Hub

The students will solve two open problems: computing an
 automatic switch which turns on the light only if the ambient
light intensity is lower than a certain threshold, and comput-
ing an alarm clock, which emits a sound of increasing frequen-
cy as the ambient light increases. Further developments are
possible, but extra sensors will need to be bought and plugged
into the hub.

<Buying the sensors>
Information on where and how to buy the sensors is available
online.[4]

<Conclusion>
At the end of these activities, we noticed that our students’ un-
derstanding of coding, the general program structure as well
as logic and algorithms had improved significantly.

<Cooperation activity>
A wonderful cooperation activity could be to promote self-
entrepreneurship. The students could try to invent an original
human machine interface (HMI) which is technically useful.
This HMI should read a stimulus from an environment (atmo-
sphere, home, human body, etc.) and react by issuing another
signal that emits a warning, performs an action or signals a
situation. Partner schools abroad could carry out a market
survey to gauge the market demand and value that the device
may have in their countries. Any school taking part in this ex-
change could invent a device and make market enquiries for
the product assembled by the other schools. At the end of the
project, the most popular tool could be produced on a small
scale by a partner company, and sold. Self-entrepreneurship
is highly regarded all around the world, as it offers a great op-

portunity to teach science, technology and finance-related
subjects together.

<References>
[1] www.arduino.cc
[2] www.arduino.cc/en/Guide/ArduinoDue
[3] www.arduino.cc/en/Main/Software
[4] All additional materials are available at

www.science-on-stage.de/coding-materials.

<53>Fundamental Science in 1’s and 0’s: SMB—Science Magic Box

http://www.arduino.cc
http://www.arduino.cc/en/Guide/ArduinoDue
https://www.arduino.cc/en/Main/Software
http://www.science-on-stage.de/coding-materials

<Author> Mirek Hančl

<Author> Julia Winckler

CoALA—Code
a Little Animal

<Keywords> simulation, IPO model (input-processing-
output), measurement, computational thinking, making

<Disciplines> science, biology, computer science

<Age level of the students> 9–13

<Hardware> Calliope mini[1] or BBC micro:bit[2]

<Workshop A> crocodile clips, red craft plastic, USB cable
and battery for the Calliope mini, self-adhesive copper
tape (5 mm), cardboard, glue, scissors, small water
glass, poster with animal pictures
<Workshop B> crocodile clips, USB cable and battery for
the Calliope mini, Grove moisture sensor, Grove I2C touch
sensor, Grove NFC, Grove I2C hub[3], cardboard, red craft
plastic, small water glass, poster with animal pictures

<Language> MakeCode[4]

<Programming level> easy

<Summary>
You would be hard-pressed to find a child who does not want
to own a pet. To find out which one is the best, the students will
construct a simulator that is controlled by a single-board com-
puter and uses external sensors to imitate the needs of a pet.

<Conceptual introduction>
The subject of ‘pets’ is not only part of the curriculum in prima-
ry schools but also in secondary schools in biology, where
 students learn how dogs were bred from wolves, the basic
needs of a pet and the requirements that owners need to
meet. Typically, students analyse texts in their schoolbook or
videos on the Internet because schools cannot easily provide
pets for this purpose. Therefore, an electronic simulator to
 depict the basic needs of a pet (food, drink, exercise, petting
and correct body temperature) would be both illustrative and
 instructive.

The CoALA project does not utilise ready-to-use devices from
commercial teaching material manufacturers that only allow
specific, limited programs provided by the manufacturer. Nor
is a simple toy used, such as the Tamagotchi, which was a
worldwide success in the 1990s. Instead, the students plan,
construct and program their own simulator in the form of their
favourite pet, including an image of the animal, with the aid of
a single-board computer (in our case, a Calliope mini[1] or a
BBC micro:bit [2]) and craft supplies such as cardboard, copper
tape, and external sensors. The students program an algo-
rithm to record and evaluate the basic needs of the chosen an-
imal. Depending on the algorithm, the animal simulator shows

 different smileys (to show how the animal feels) or plays fit-
ting self-composed melodies.

The concept of the project ‘CoALA—Code a Little Animal‘ is that
of a workshop. The OER (Open Educational Resources) teaching
materials consist of three parts. The first part introduces the
students to the basics of algorithms and handling the Calliope
mini single-board computer[1]. In part two, they explore the
 basic needs of a pet and how to assess them. In part three of
the workshop, the students build their favourite pet with card-
board, install the single-board computer and the appropriate
sensors and create suitable algorithms with the aid of a
 graphical programming language.

To meet the requirements of the science curriculum in primary
schools and the biology curriculum in secondary schools, we
offer the workshop materials in two versions. For primary
schools (workshop A), the rates of eating, drinking and pet-
ting are measured and recorded by using conductive, adhe-
sive copper tape. For secondary schools (workshop B), the
students use external sensors to measure moisture (drink-
ing), for multi-touch interactions (petting) and for the wireless
read-out of Near Field Communication chips (eating). In both
versions, built-in sensors measure movement and temperature.

All the workshop materials plus coding examples for the
 programming environment MakeCode[4] are available for
download online.[5]

<What the students/teachers do>
To build the pet simulator, the students look for an image of
their favourite pet or take a picture themselves. The printed
 image is glued onto the cardboard and equipped with adhesive
copper tape (workshop A) or external sensors (workshop B) in
the appropriate places. The adhesive copper tape or the exter-
nal sensors is/are wired to the connections of the single-board
computer and a suitable program is written on the computer to
make it ‘intelligent’. In the following example, the basic need
‘food’ is used to explain how the two versions of the workshop
differ and how the programming environment is used.

<Info>

<55>Microcontrolling the World: CoALA—Code a Little Animal

When the simulated pet feeds, taste sensors obviously cannot
be used. Instead, the appropriate sensor ‘reads’ the offered
food and the algorithm is controlled by a suitable conditional
branch so that the output corresponds to the expected behav-
iour of the pet. Therefore, the display of the cat simulator
shows a smiley (face) when it is fed a mouse and a sad face
when it receives a bone. These branches are the same for both
versions of the workshop.

However, the food sensors are completely different. In work-
shop A, pictures of different kinds of food are fastened to card-
board cards. On the other side, copper tape is glued to those
cards so that the ‘tongue’ of the simulator ‘reads’ a binary
 coded number when the card is held to it. As the connections
of the ‘reader’, i.e. ‘tongue’, are connected to the different pins
of the single-board computer, the algorithm can test directly
whether the pins are short-circuited or not: the food cards
short-circuit different combinations of pins.

In workshop B, an external sensor with an NFC chip and at-
tached radio antenna is used to wirelessly read out strings
from an NFC tag. This tag can either be on an adhesive label or

in a chip card. Unlike in workshop A, no binary coded number
is read out, but instead the name of a food like ‘fish’ or ‘bone’.
This increases the implementation options and the complexity
significantly. In the algorithm, the conditional branch is con-
trolled by comparing the read-out value with the strings provid-
ed. In the CoALA project, the NFC tags are written on via a
smartphone app; the read-out of the NFC tag is didactically re-
duced to a single block of code in MakeCode[4] and then loaded
as an extension of the programming environment.

<Algorithm to use in other languages>
The available code examples[5] can be uploaded to the online
MakeCode programming editor[4] and then used directly. By
switching from block view to text view, the source code is
 converted to JavaScript and can thus be easily used in other

CALLIOPE

mini

PROZESSOR

BATTERIE

LAGESENSOR

RESETUSB

LAUTSPRECHER
RGB LED

A B

— +

0

1 2

3

A0 A1

-0 +3

3

21–

0

food card 3

front

connector card

front

<56> Microcontrolling the World: CoALA—Code a Little Animal

programming languages for the Calliope mini[1] or the BBC
 micro:bit[2]. The programming extensions for MakeCode used
in the workshop materials to control the multitouch and NFC
sensors also work for the BBC micro:bit.

Lastly, the programming examples are provided on the web-
site as structure charts so the algorithms can be easily under-
stood and ported to other platforms and programming envi-
ronments such as Arduino.

<Conclusion>
The CoALA project provides students with the opportunity to
familiarise themselves with the fundamental concepts of algo-
rithmics—statements, sequences, conditional branching,
loops and variables. They do not learn them by simple memo-
risation and reproduction but rather by working on an exciting
educational project with real-life applicability. They use simple
materials to construct a personal pet simulator, which they
bring to life with the help of coding and their own imagination.
The workshop materials provided teach computer science
skills in a didactically reduced form and at the same time offer
different levels of learning, thus meeting the needs of hetero-
geneous learning groups or older students. Both versions of
the workshop can be easily mixed.

The workshop materials have been successfully tested with a
Calliope mini[1] and the single-board computer BBC micro:bit[2].
A low cost extension board is needed to use the external grove
sensors for moisture measurements, for NFC or for multitouch
in workshop B with the BBC micro:bit.[3]

<Cooperation activity>
The CoALA workshop can be used in various forms of coopera-
tion. As the material is for primary schools as well as for sec-
ondary schools, an exchange could take place between differ-
ent types of schools. Thus, the exchange would not only be
rewarding for the students but also for the teachers of both
types of schools. The materials of workshop A are designed to
teach simple logical Yes/No differentiations, while the materials
of workshop B are designed to teach more complex, combined
conditions, variables and string operations.

The materials of the workshops can also be combined as need-
ed to promote cooperation within heterogeneous learning
groups. Students who need more support could, for example,
use the simple sensors of workshop A, while stronger students
could explain the sensors of workshop B to their classmates
and practise their communication skills in the process.

During the CoALA project, transnational cooperation between
two secondary schools took place in which two groups of stu-
dents—one from Germany and one from Spain—discussed
their experiences with pet simulators via video conference. In
addition to suggestions for problem-solving, the vocabulary of
names and basic needs of their pets were exchanged in English
as well as in their respective native languages—coding in
STEM education with a language course.

<References>
[1] https://calliope.cc/en
[2] www.microbit.co.uk/home
[3] If you use a BBC micro:bit, you also need a Grove Shield

for micro:bit.
[4] https://makecode.calliope.cc/?lang=en or

https://makecode.microbit.org/?lang=en
[5] All additional materials are available at

www.science-on-stage.de/coding-materials.

<57>Microcontrolling the World: CoALA—Code a Little Animal

https://makecode.calliope.cc/?lang=en
https://makecode.microbit.org/?lang=en

<Author> Eleftheria Karagiorgou

<Author> Sevasti Tsiliki

Liquid
Data

<Keywords> physical computing, acidity, water, liquid,
temperature, pH, data logging

<Disciplines> chemistry

<Age level of the students> 16

<Hardware> Arduino starter kit[1], data logging shield,
temperature sensor, pH sensor, SD card

<Language> Arduino IDE – Wiring C[2]

<Programming level> medium

<Duration of the project> 7 teaching hours

<Summary>
This teaching unit is an interdisciplinary approach using
 physical computing and chemistry. The students take on the
role of researchers and conduct an experiment to determine
whether there is a relationship between the acidity and the
temperature of water. This will require the use of Arduino and
chemistry.

<Conceptual introduction>
This educational activity was created to demonstrate to the
students how physical computing can be integrated into STEM
education, and more specifically, into chemistry by using
 innovative teaching methods. It was carried out as an extra-
curricular activity during our school's Robotics and STEM club,
which meets for two hours every Sunday afternoon.

The students took on the role of researchers and were tasked
with proving the significant role that temperature plays in pH
measurements. As the temperature rises, molecular vibra-
tions increase, which allows water to ionise and form more hy-
drogen ions. This causes the pH level to drop as a result.

<Teaching method>
Inquiry-based science education: we wanted to involve our
students in an active learning project, based on questions
which then generate further questions as the students pro-
gress through the research project. In this way, the students
become researchers and learn by doing a practical activity.

<Prerequisites—background knowledge>
According to the Greek curriculum:

 ↪basic knowledge of programming that was acquired during
the 3rd year of junior high school and during the 1st year of
senior high school
 ↪basic knowledge of acidity and pH theory that was acquired
during the 3rd year of junior high school

<Teaching materials/space used>
The Educational Robotics and STEM lab of the school contains
the following:

 ↪Arduino[1] starter kit (includes an Arduino board, cables,
LCD screen, etc.)
 ↪Adafruit Data Logger Shield for Arduino (e1)
 ↪Analog pH meter Pro Kit for Arduino (e2)
 ↪Waterproof temperature sensor (e3)
 ↪SD card
 ↪A computer with an SD port, such as a laptop, is necessary
for the coding and the data logging parts of this teaching
unit
 ↪Demineralised water (purified water that has had most or
all of its mineral and salt ions removed)
 ↪ Ice packs and a cooler to preserve the ice cubes

<Info>

 e 1: An Adafruit Data Logger Shield for Arduino[3]

 e 2: Analog pH meter for Arduino

 e 3: Waterproof temperature sensor

<59>Microcontrolling the World: Liquid Data

<Research question>
Is there a relationship between the liquid's acidity and temper-
ature?

<Problem-solving questions>
1. How can we connect the sensors with the Arduino board?
2. How will we do the data logging?

<What the students/teachers do>
<Preparatory phase: Introduction — theory –
group work>
Duration: 1 hour
The students will be divided into groups and receive a short in-
troduction to Arduino[1], the sensors used (pH sensor and
temperature sensor) as well as how they work. They will also
discuss the theory of acidity, the pH meter and the relation-
ship between acidity and temperature. The students will then
be asked to design an experiment to measure the level of fluc-
tuation in the acidity of liquids as they change in temperature.

<Phase 1: Introduction to Arduino and how to
code for it>
Duration: 1 hour
The students will familiarise themselves with the Arduino cir-
cuits and then learn the basics of how to code for Arduino. They
will learn to connect the LCD screen to the Arduino and,
through coding, display a message on it (e4 & 5).

<Phase 2: Connecting the sensors>
Duration: 1 hour
The students will learn how the pH sensor (e6) and the
 temperature sensor (e3) work by connecting them to the
 Arduino[1] and coding them to present the data on the LCD
screen. This is a preparatory phase to understand the ins and
outs of the sensors.

<Phase 3: The data logging shield>
Duration: 2 hours
The students will solder the data logging shield on the Arduino[1]
board with the SD card to do the data logging (e7). They will
code the data logging shield, which has its own real-time clock
(RTC). They will start the experiment by using demineralised
water at 25 °C (neutral) and then they will measure the pH and
the temperature by sinking the sensors into the liquid for 10
seconds.

<Phase 4: The experiment>
Duration: 1 hour
The students will conduct tests with samples of the demineral-
ised water, all of which have a different temperature. They will
start with demineralised water (at room temperature) in a
bowl, or beaker, cooled by surrounding ice cubes in a water
bath (e 8 & 9). Every 1 minute, they will sink the sensors into
the liquid for 10 seconds. They will repeat the procedure at
least 6 times to generate a large amount of data for the plot-
ting phase of the unit. This way, the water bath will cool liquids
gently and gradually.

 e 4: Connecting the LCD screen

 e 5: Displaying sensor measurements

 e 6: A pH sensor

 e 7: Data logging shield soldered to the Arduino[4]

<60> Microcontrolling the World: Liquid Data

<Phase 5: Results>
Duration: 1 hour
The students will unplug the SD card from the data logging
shield, put it into the laptop to read the data file and do the
 plotting, which will illustrate the possible connection between
temperature and acidity using a spreadsheet application (e.g.
MS-Excel). The data will be saved on the SD card as a .csv file
so it opens as a spreadsheet. The teacher will discuss the re-
sults of the data logging with the students and determine
whether they managed to answer the problem- solving ques-
tions. The students will present their results to the class and
discuss them with their peers.

<Conclusion>
By the end of the activity, the students are expected to under-
stand the connections between the STEM subjects by imple-
menting chemistry theory into a physical computing experiment.
The students will also develop their inquiry-based thinking
and working skills with the help of their teachers. Furthermore,
the students will realise how the knowledge that they learn at
school can be implemented practically in the real world as a
result of doing these hands-on activities. Soft skills like co-
operation, which are also developed while solving the ques-
tions and working on the projects, are essential for their future.
Finally, this activity also offers the students an excellent op-
portunity to improve their performance in STEM-related fields
and to better understand the importance of the cross-curricular
nature of this project.

The experiment could be extended by using a wider variety of
liquids. One example is vinegar in a water bath–either for a
cold liquid, with ice cubes in the water bath, or for a hot one,
with warm water (see e10).

The data logging shield must be precisely soldered to the
 Arduino board for this project. Some of your students may
have difficulty doing this, so you should guide them through
the process or even do the soldering yourself where necessary.

<References>
[1] www.arduino.cc
[2] www.arduino.cc/en/Main/Software
[3] Picture: oomlout (https://commons.wikimedia.org/wiki/

File:ARSH-09-DL 03.jpg), „ARSH-09-DL 03“, CC BY-SA 2.0,
https://creativecommons.org/licenses/by-sa/2.0/
legalcode

[4] Picture: oomlout (https://commons.wikimedia.org/wiki/
File:ARSH-09-DL_(5703636953).jpg), „ARSH-09-DL
(5703636953)“, CC BY-SA 2.0, https://creativecommons.
org/licenses/by-sa/2.0/legalcode

 e 8: Measurement of pH and temperature

 e 9: A water bath with ice cubes

0

5

10

15

20

25

30

pH
3 3.05 3.1 3.15 3.2 3.25

te
m

pe
ra

tu
re

 e 10: Data of vinegar

<61>Microcontrolling the World: Liquid Data

http://www.arduino.cc
http://www.arduino.cc/en/Main/Software
https://commons.wikimedia.org/wiki/File:ARSH-09-DL 03.jpg
https://commons.wikimedia.org/wiki/File:ARSH-09-DL 03.jpg
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://commons.wikimedia.org/wiki/File:ARSH-09-DL_(5703636953).jpg
https://commons.wikimedia.org/wiki/File:ARSH-09-DL_(5703636953).jpg
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode

<Author> Immaculada Abad Nebot

<Author> Pere Compte Jové

The Remote
Captain

<Keywords> remote control, 2D and 3D design, modelling,
electronic board soldering, chip programming, app pro-
gramming, 3D printer

<Disciplines> technology, engineering

<Age level of the students> 14–16

<Hardware> Arduino[1], Bluetooth module, materials for
building the model boat

<Language> Arduino, ArduinoBlocks[2], AppInventor[3]

<Programming level> medium

<Summary>
The students will design and build their own boat and navigate
in a pool. Once they have completed this initial challenge, they
will use an Arduino board to control the boat remotely with a
tablet or smartphone.

<Conceptual introduction>
The students will design their own model boat and learn how
to look at this task from an engineering perspective. The pro-
ject will start with an analysis of the different kinds of boats
using the Internet. After that, a small group of students will
build a model that is stable on water.[4]

It will work with a reversing switch made by the students
which lets the user control two motors (each one can turn
 forwards and backwards).

The students will incorporate a Bluetooth device so they can con-
trol the boat remotely with a smartphone. Using AppInventor[3],
they will program a mobile app with different control systems,
e.g. with buttons, with voice control or with an accelerometer
(the boat will change direction according to the hand position
of the person controlling it).

Finally, the students will have the opportunity to present their
designs at a naval modelling exhibition (e1) in front of
 experts, and to discuss any possible shortcomings in their
models with them. This expert input will allow the students to
improve their future models.

<What the students/teachers do>
The students will create their design of choice after investi-
gating different boat shapes on the Internet. They can draw the
boat with a 3D design software such as sketchUp[5] or Tinker-
cad[6]. However, they need to keep in mind that the boats must
be very stable on water to prevent them from overturning.
(e2)

<Info>

 e 1: Presentation of the model boats at a naval modelling exhibition in Spain

<63>Microcontrolling the World: The Remote Captain

We provide the plans for one model boat (e3), including the
required measurements, online. If you would like to change
this design or print it, you can download various formats (.skp,
.stl and .gcode).[4]

If your school does not have a 3D printer, it is often possible to
cooperate with other institutions such as universities, maker
spaces or similar. In our case, the students did their 3D printing
at a 3D printing centre (e4a–c). Step-by-step instructions
for building the boat are available online.[4]

 e 5, 6: Finished boat and 3D model

 e 2: Various 3D boat models

 e 4a-c: Printing blades at the 3D printing centre Cesire Aulatec, Barcelona

 e 3: Door, front and side of the boat cabin

<64> Microcontrolling the World: The Remote Captain

<Electronic circuit>
To connect the accessories to the Arduino board[7], use the
electronic circuit diagram in e7 and follow the respective
 instructions:
1. You can install a buzzer (Arduino pin 6) and lights

 (Arduino pin 7) on the roof. (e8)
2. At the rear of the boat, you can connect a servomotor to

control a rudder (Arduino pin 9). (e8)
3. Connect the Bluetooth module in accordance with the

schema TXD (Arduino pin 10) and RXD (Arduino pin 11).
4. Connect an L9110S motor driver controller board for

 Arduino with external batteries. (e7)

<How to control the motors and other features
of the boat>
We recommend that you program the Arduino with Arduino
IDE[1], ArduinoBlocks[2] or another similar program. The stu-
dents can program the following tasks:
1. Connect and disconnect the lights on the roof.
2. Make a sound with the buzzer.
3. Control the servo position (40º right, 20º right, in the

 middle, 20º left and 40º left).
4. Both motors must turn and the boat moves forwards.
5. Both motors must turn and the boat moves backwards. e 8: The boat with accessories

 e 9: Construction of the boats

 e 7: Electronic circuit diagram

<65>Microcontrolling the World: The Remote Captain

6. The boat must change its direction to the right (the left
motor turns forwards and the right motor turns backwards).

7. The boat must change its direction to the left (the right
motor turns forwards and the left motor turns backwards).

8. Control all the programs with Bluetooth.

<Program the app to control the boat with a
smartphone using AppInventor[3]>
1. Program the app so it uses Bluetooth to connect with the

boat.
2. Control the different elements of the boat with buttons.
3. Control the rudder blade with a scroll bar.
4. Control the boat using the accelerometer of the tablet or

smartphone; tilting the smartphone forwards, backwards,
right or left will cause the boat to move in the corresponding
direction.

5. Use the option of speech recognition to control the boat
with your voice.

6. Combine all these programs.

<Material list and equipment needed>
You can find a list containing all the required materials on-
line[4]. The list includes details such as the quantity needed,
price range and where the materials can be found.

The material for one boat costs roughly €21. We spent approx-
imately €15 on the electronics and €6 on the rest of the re-
quired materials.

<Cooperation activity>
While editing this material, we cooperated with Eleftheria Kara-
giorgou and Sevasti Tsiliki from the 7th Senior High School of
Trikala, Greece, to implement an Arduino circuit in a hydrobot
that allows us to navigate underwater. In this case, it is very
important to protect the motors with wax and use protective
as well as waterproof housing for the Arduino plate to prevent
any water from entering the motors. We equipped our hydrobot
’Argolith‘[8] with the microcontroller Arduino UNO to provide it
with an electronic ’brain‘ and to record luminosity and temper-
ature measurements underwater. The ’brain‘ also included a
data logging shield, which offered us a real-time clock and a
recording circuit for an SD card, where we saved the measured
data.

 e 10: Coding for the boats

 e 11: The user interface of the app

 e 12: Constructing the hydrobot

<66> Microcontrolling the World: The Remote Captain

The online material contains an underwater video of the
 ’Argolith‘ hydrobot during testing in a river in Trikala, Greece.[4]

<References>
[1] www.arduino.cc
[2] www.arduinoblocks.com
[3] http://appinventor.mit.edu
[4] All the steps in this project and additional information:

www.science-on-stage.de/coding-materials.
[5] www.sketchup.com
[6] www.tinkercad.com
[7] www.arduino.cc/en/Reference/Board
[8] A construction manual is available at

http://seaperch.mit.edu/build.php.

 e 13: Arduino with waterproof casing

<67>Microcontrolling the World: The Remote Captain

http://www.arduino.cc
http://www.arduinoblocks.com
http://appinventor.mit.edu
http://www.science-on-stage.de/coding-materials
http://www.sketchup.com
http://www.tinkercad.com
http://www.arduino.cc/en/Reference/Board
http://seaperch.mit.edu/build.php

This article deals with the use of coding in science. You may
need special hardware and software to use the teaching units
of this booklet. It is also helpful to have a basic knowledge of
the fundamentals of programming. This chapter aims to pro-
vide you with a clear overview of the required information.

<Hardware>
Coding in science mainly deals with the measurement of
physical and chemical quantities with sensors and the control
of certain outputs. Typical sensors measure temperature, noise,
light, distance, pH, button press, touch, etc. Typical outputs are
an LED, a buzzer, a speaker, a motor, etc.

<Arduino>
These sensors and outputs can be connected to or are already
built into a microcontroller board or a single-board microcom-
puter. These can be more or less sophisticated. The smallest
board is an Arduino[1]. It is available in different versions, but
an Arduino UNO is widely used in schools (and also in this pub-
lication). The board contains an 8-bit microcontroller that runs
quite slowly. However, the speed of the processor is not impor-
tant for most applications as the board communicates solely
via a reset button and an LED.

The board can be cabled to various other sensors and outputs.
Programs for an Arduino are written on a computer and sent to
an Arduino via a USB connection. When the program is loaded
onto the Arduino, it can be started (and later be interrupted
and restarted) by pressing the reset button. When the Arduino
is connected via USB, it receives power through the USB con-
nection; however, it needs a separate power source when it is
disconnected from the computer.

One very practical way to expand an Arduino board is through
the use of shields, which are circuit expansion boards that
plug directly into the Arduino pin headers. For example, data
logger shields that have an on-board real-time clock are often
used. The data are written onto an SD card that is put into the
SD card slot of the shield.

You can find well-documented programming examples on the
Internet for almost every expansion (shields, sensors and
 outputs).

Windows, macOS or Linux computers can all be used to pro-
gram the Arduino. The software can be downloaded online.[2]
You will also find numerous in-depth examples on the Internet
detailing how to program the Arduino. Programs for the Arduino
are called ’sketches’.

 e 1: An Arduino

How to
Code
<Author> Bernard Schriek

<68> How to Code

<Calliope mini and BBC micro:bit>
Another single board computer is the Calliope mini[3], which is
compatible with the BBC micro:bit[4]. The difference between
these two boards is that the Calliope mini has many sensors
and actors already on-board, so for many projects you do not
require external sensors and actors. The Calliope mini even
has Bluetooth to communicate with other boards or smart-
phones. The processor is stronger and faster than the proces-
sor on the Arduino, and it also has considerably more on-board
memory. Programs written on a computer can be transferred
via USB onto the Calliope mini. The program starts automati-
cally when it is transferred, but it can also be restarted by
pressing the reset button. The Calliope mini has many sensors
on board, but others can be attached by using standardised
grove connectors[5].

It has a 5×5 LED matrix on-board that can be used for text
scrolling. The Calliope mini is slightly more expensive than the
Arduino, but the advantage of having many sensors and outputs
on-board is worth the greater expense in everyday school life.

The Calliope mini uses JavaScript for programming, but you
can also use block-oriented programming environments that
are more suitable for younger children. They will be outlined
later in this chapter.

<Raspberry Pi>
The Raspberry Pi[6] is a famous, fully functional single-board
computer that runs both Linux and Windows as an operating
system. It can be connected to a screen with an HDMI cable,
and a mouse and keyboard can be connected via USB. At €50
to €60, its price is very reasonable, but still double that of a
Calliope mini. You can use almost any programming language
on the Raspberry Pi. Instead of a hard disk, it uses an SD card
to save programs and data. It can be expanded with different
expansion boards for different purposes. It has Wi-Fi on-board
and can be linked into a local Wi-Fi network. Like all the other

boards, it needs an external power supply either with batteries
or a power adapter. While the Raspberry Pi is a full computer, it
is not as fast as a normal desktop computer or laptop, and it
only has an SD card as external memory. There are thousands
of projects for it on the Internet. You should have some experi-
ence with computers to work with the Raspberry Pi.

<LEGO Mindstorms>
LEGO Mindstorms[7] is a much more expensive microcomputer
system. Most students have some experience with LEGO, so
they can easily build program-controlled tools and machines.
LEGO has its own icon-based programming system called EV3
software, which is based on LabView[8] (a professional software
for measuring and controlling). Here you move programming
blocks to make a working program. Using and programming
motors is very important when you program an EV3- Robot.
 Besides the original LEGO software, you can also use lejOS[9],
a special implementation of the Java virtual machine. Due to
Eclipse’s existing LEGO plug-in, most people use Eclipse as the
Java development tool on a computer. A large number of sen-
sor and output bricks can be connected to the main processor
brick, but like all LEGO materials, they are much more expen-
sive than the sensors for the previously mentioned boards.

There are hundreds of other single-board computers, many
of which are designed to run robots for every purpose. If you
are looking for project ideas, we recommend that you visit

 e 2: A Calliope mini with an ultrasonic distance sensor
and a battery pack

 e 3: A Raspberry Pi

 e 4: A Raspberry Pi with an expansion board

<69>How to Code

 hackster.io[10]. However, please be aware that you need to
 register for free to get access to many project descriptions.

<Software>
In the 21st century programming and coding skills will become
increasingly important in all areas of life. One goal of this
booklet is to help teachers to encourage their students’ inter-
est in coding. Students are usually very interested in coding
and they only need the right tools and programming languages
to be successful and more motivated as a result. The choice of
programming language depends on the age of the students.
Younger students will need more visual help during the pro-
gramming and debugging process. Therefore, the next para-
graphs will outline how to implement several important coding
concepts, using block and text programming.

<Variables>
Variables are used to hold values for later use. A good way to
look at variables is to imagine them as boxes. A box holds a
 value, it has a certain form that depends on the type of value
(integer, float, string, Boolean, i.e. true or false), and it has a
label attached to it containing the name of the variable. We
suggest that you use explanatory names for variables, such
as temperature instead of the letter t, so other people can bet-
ter understand your programs. In block-oriented languages
(Scratch[11], Snap![12], MakeCode[13]), a variable looks like a
 label and you can watch the name and the value even while a
program is running (e5). This is very helpful for debugging.
There are also blocks for setting or changing the value of a var-
iable that are self-evident.

<Assignments>
In some text-oriented programming languages, variables must
be declared. The declaration includes information about the
type of variable (integer, string, …). Other text-oriented lan-
guages wait for the first assignment to decide implicitly what
type the variable is.

And the assignment itself has a hurdle: it is written like a math-
ematical equation. ‘temperature = 23’ is an assignment and
means that the variable temperature receives the value 23
(e6). If you want to compare the temperature with the value
25, you write ‘temperature == 25’, using two equal signs. This
difference is the cause of many bugs in software development.

<Program flow>
Most computer programs consist of statements that are con-
secutively processed, i.e. one after the other. Admittedly, many
languages include parallel processing, where two or more pro-
grams run at the same time in threads—even Scratch[11] or
Snap![12] offer this parallel processing.

But we will now look at a single process. The statements are
executed from the first block or line to the last block or line.
This is called a sequence. But things are not usually that sim-
ple: You want the program to carry out different commands
based on decisions made at certain points in the program. This
is called branching.

 e 5

 e 6

<70> How to Code

<Branching>
There are three types of branches: one-sided, two-sided and
multi-sided, and they all need a condition to indicate what you
want the program to do. This condition is usually a comparison
between values. The result is a Boolean true/false. The one-
sided branch just adds several additional statements to the
program flow that are executed when the condition results to
true. The two-sided branch adds two additional sets of instruc-
tions from which only one set is executed, depending on the
result of the condition. The multi-sided branch takes a variable,
and depending on the value of that variable, different sets of
instructions are executed. Block-oriented languages provide a
good visualisation of the condition and the instruction sets.
Text-oriented languages use if- or if-else statements for the
first two types of branches and case-statements for multi-
sided branches.

<Loops>
Loops, which are used for repeatedly executed statement
sets, are another important instrument that is used to control
the flow of instructions. Loops can be distinguished by the
condition that controls the loop. The condition—usually a com-
parison—can be at the beginning or the end of the loop. If it is
at the beginning and false, the loop statements will never be
executed. If the condition is at the end of the loop, the loop
statements will be executed at least once. Counting loops
(sometimes called for-loops) are also used when it is clear
how many times the loop statements should be executed.

Statement sequences, loops and branches are normally
 nested. This means that a loop can be inside a branch, and a
branch can be inside a loop. There are rules on how to docu-
ment the program flow in a diagram. In this booklet, we use
Nassi-Shneiderman diagrams[14] to explain the flow of instruc-
tions in our programs.

<References>
[1] www.arduino.cc
[2] www.arduino.cc/en/Main/Software
[3] https://calliope.cc/en
[4] www.microbit.co.uk/home
[5] http://wiki.seeedstudio.com/Grove_System/
[6] www.raspberrypi.org
[7] www.lego.com/en-us/mindstorms
[8] https://en.wikipedia.org/wiki/LabVIEW
[9] www.lejos.org
[10] www.hackster.io
[11] https://scratch.mit.edu
[12] https://snap.berkeley.edu
[13] https://makecode.calliope.cc/?lang=en
[14] https://en.wikipedia.org/wiki/Nassi-Shneiderman_

diagram e 7

 e 8

 e 9

 e 10

<71>How to Code

http://www.arduino.cc
http://www.arduino.cc/en/Main/Software
https://calliope.cc/en
http://www.microbit.co.uk/home
http://wiki.seeedstudio.com/Grove_System/
http://www.raspberrypi.org
http://www.lego.com/en-us/mindstorms
https://en.wikipedia.org/wiki/LabVIEW
http://www.lejos.org
http://www.hackster.io
https://scratch.mit.edu
https://snap.berkeley.edu
https://makecode.calliope.cc/?lang=en
https://en.wikipedia.org/wiki/Nassi-Shneiderman_diagram
https://en.wikipedia.org/wiki/Nassi-Shneiderman_diagram

<Computer Science Education
with Snap!>
snap.berkeley.edu/run

Creativity as well as computational and media literacy are
 considered important skills in the ongoing digital revolution.
Snap! is a tool that supports people of any age or background
to get in touch with computer science (CS) and actively shape
the current developments.

<What is Snap!?>
Snap!–Build your own Blocks is a visual, blocks-based pro-
gramming language. It invites learners to bring their ideas to
life while getting to know computer science in a playful and
experimenting mode. Fascinating about Snap! is its keen aspi-
ration to provide a low entry level while not reducing its ex-
pressiveness. It allows beginners and experienced program-
mers to immerse into advanced CS concepts like arbitrary
data structures, higher order functions and even custom con-
trol structures in a visually appealing and understandable
way.

Snap! is developed at SAP together with researchers of UC
Berkeley. Today, it is available in over 40 languages and used
for CS education in just as many countries. Snap! is open-
source and runs in all modern web browsers.

 ↪ is one of the top 100 programming languages in the
TIOBE Index

 ↪ is used for artificial intelligence by researchers at the
University of Oxford

 ↪ is used by the maker scene for 3D-printing,
 embroidery and robotics

 ↪ is easy to teach, for example with the free course on
open.sap.com/courses/snap1 (in English, other
 languages in preparation)

<Did you know that Snap!…>

<72> Computer Science Education with Snap!

http://open.sap.com/courses/snap1

<Participate in Meet and Code>
Get the support that you need to organise and promote coding!

‘I had no idea that programming was so easy!’ Meet and Code
2018 was a real eye-opener for Philip. ‘I really want to continue,’
said Louisa after attending a hackathon. And that's exactly
what the initiative wants to show; programming is fun and
easy to learn.

In the second year of Meet and Code, more than 52,000 boys
and girls participated in over 1,100 events in 22 countries. As
always, the action took place during the EU Code Week in October.

Every audited event deemed worthy of funding received seed
money of up to €500. All kinds of programming events can be
supported and any non-profit organisation can apply with a
project.

The initiative intends to continue the successes of last year in
2019: numerous events, projects and workshops will take
place during the EU Code Week in 22 countries. The goal is to
introduce children and young people between the ages of 8
and 24 to the world of technology and coding. The events are
designed to show young people how much fun coding can be

and how it can help bring ideas to life. By exploring a broad
range of technology and digital topics and creative coding,
they will be encouraged to develop the digital skills they need
in today's world.

The Munich based organization Haus des Stiftens gGmbH with
its IT portal Stifter-helfen and the respective country partners
of the TechSoup Europe network are behind the initiative. Meet
and Code is made possible by SAP.

In 2019, prizes will again be offered for the most creative event
ideas and most original implementations. The Meet and Code
Award will be presented in at least three categories, including
innovation and diversity.

All activities, information and registration at
 www.meet-and-code.org

TWITTER Facebook-F Follow us and join the discussion:
@stifter_helfen @TechSoupEurope
#meetandcode #codeEU #SAP4Good

Participate in Meet and Code

e

Pe
te
r
Bö
hm
er

e

Pe
te
r
Bö
hm
er

e

Di
et
ri
ch
 B
ec
ht
el

e

Di
et
ri
ch
 B
ec
ht
el

<73>Participate in Meet and Code

http://www.meet-and-code.org

<Further Material>
The authors have created additional resources and material
for the teaching units. You can find them online as free download at
www.science-on-stage.de/coding-materials

<Project Events within
Coding in STEM Education>

<2 June 2016>
Brainstorming for topics

 within the final meeting of the
project Football in Science

Teaching, Brussels, Belgium
<20–22 October 2017>
First workshop in connection with the
European STEM League Final in the
German Football Museum, Dortmund,
Germany

<1 March 2019>
Presentation of the publication
in Vienna, Austria

<Autumn 2020>
Code League Final

<13–15 April 2018>
Second workshop in Berlin, Germany

<March 2019 – March 2020>
Code League Competition

<Follow-ups throughout
2019 and 2020>
Teacher training courses in
various European countries

<74> Further Material & Project Events

Science on Stage –
The European Network for Science Teachers
… is a network of and for science, technology, engineering

and mathematics (STEM) teachers of all school levels.
… provides a European platform for the exchange of

 teaching ideas.
… highlights the importance of science and technology in

schools and among the public.

The main supporter of Science on Stage is the Federation of
German Employers' Association in the Metal and Electrical
Engineering Industries (GESAMTMETALL) with its initiative
think ING.

Join in – find your country on
www.science-on-stage.eu
Facebook-square www.facebook.com/scienceonstageeurope
Twitter-square www.twitter.com/ScienceOnStage

Subscribe for our newsletter
 www.science-on-stage.eu/newsletter

Football in Science Teaching
 ↪Teaching units about the various
 aspects of STEM in football
 ↪Chapters: Biosphere, Body, Ball,
Big Data

Smartphones in
Science Teaching

 ↪Guidelines and experiments for
 inquiry-based learning with
 smartphones

Lilu’s House – Language Skills
through Experiments

 ↪Primary school students discover
natural scientific phenomena in
 bathroom, living room and kitchen
while they practice speaking, writing
and reading.

Download free of charge at
www.science-on-stage.eu/teachingmaterials

<Further material>

<75>Science on Stage Europe

http://www.science-on-stage.eu
http://www.facebook.com/scienceonstageeurope
http://www.twitter.com/ScienceOnStage
http://www.science-on-stage.eu/newsletter
https://www.science-on-stage.eu/images/download/iStage_3_-_Football_in_Science_Teaching.pdf
https://www.science-on-stage.eu/images/download/iStage_2_Smartphones_in_Science_Teaching.pdf
https://www.science-on-stage.eu/images/download/iStage_2_Smartphones_in_Science_Teaching.pdf
http://www.science-on-stage.eu/teachingmaterials

Main supporter of
Science on Stage Germany

A project by

www.science-on-stage.de

